
The Specific Heat at Constant Pressure [Revision : 1.1]

In class (Wed. March 9), I was unable to derive the expression quoted in Stellar Interiors (see their
eqn. 3.86) for the specific heat at constant pressure, cP . These notes provide the missing derivation,
and discuss some of the assumptions underlying it.

Recall from the class that the specific heat at constant x (where x is some state variable) is
defined as

cx ≡
(
δQ

dT

)
x

; (1)

here, δQ is the amount of heat per unit mass1 that must be added at constant x to achieve a
temperature increase of dT . Note that we write δQ rather than dQ to emphasize that the heat
added is not a state variable, and moreover is not an exact differential (more of this later).

Now, the First Law of Thermodynamics for quasi-static changes tells us that

δQ = dE + PdV. (2)

From this, we can set dV = 0 and divide through by dT , to trivially find the specific heat at constant
volume as

cV ≡
(
δQ

dT

)
V

=
(
∂E

∂T

)
V

. (3)

To find the specific heat at constant pressure, things are a little more involved. We start by
expressing a volume change dV in terms of corresponding temperature and pressure changes,

dV =
(
∂V

∂T

)
P

dT +
(
∂V

∂P

)
T

dP. (4)

Substituting this into the FLOT gives

δQ = dE + P

[(
∂V

∂T

)
P

dT +
(
∂V

∂P

)
T

dP
]
. (5)

Setting dP = 0 and dividing through by dT , we obtain the specific heat at constant pressure, as

cP ≡
(
δQ

dT

)
P

=
(
∂E

∂T

)
P

+ P

(
∂V

∂T

)
P

. (6)

To reproduce the result quoted in Stellar Interiors, the internal energy derivative term in the
above expression must now be rewritten in terms of cV . The first step is to use the identity(

∂E

∂T

)
P

=
(
∂E

∂T

)
V

+
(
∂E

∂V

)
T

(
∂V

∂T

)
P

= cV +
(
∂E

∂V

)
T

(
∂V

∂T

)
P

, (7)

which is simply a consequence of the multi-variable chain rule. Substituting this into eqn. (6), we
find

cP = cV +
[(

∂E

∂V

)
T

+ P

](
∂V

∂T

)
P

. (8)

Now for the tricky bit (i.e., the bit that eluded me in class!). To eliminate the energy derivative
from this equation, we must make use of the Clausius equality, which is a corollary of the Second
Law of Thermodynamics (SLOT) for reversible processes:∮

δQ

T
= 0. (9)

1The ‘per unit mass’ should be assumed throughout these notes; I won’t mention it again.



This equality essentially tells us that any integral of the quantity δQ/T between two fixed points is
independent of the path taken between the points, and depends only on the state at the endpoints.
Therefore, δQ/T must be the differential of a state variable. In fact, this state variable is the specific
entropy S, so that

δQ

T
= dS. (10)

With this definition, the FLOT can be written

dS =
1
T

dE +
P

T
dV (11)

From this, it follows that(
∂S

∂T

)
V

=
1
T

(
∂E

∂T

)
V

,

(
∂S

∂V

)
T

=
1
T

[(
∂E

∂V

)
T

+ P

]
. (12)

Differentiating the first expression wrt V , and the second wrt T , we then have

∂2S

∂V ∂T
=

1
T

∂2E

∂V ∂T
,

∂2S

∂T∂V
= − 1

T 2

[(
∂E

∂V

)
T

+ P

]
+

1
T

[
∂2E

∂T∂V
+
(
∂P

∂T

)
V

]
. (13)

Because S is a state variable, the left-hand sides of these two expressions must be equal (i.e.,
differentiation order does not matter). Therefore, it follows (after a little algebra) that(

∂E

∂V

)
T

+ P = T

(
∂P

∂T

)
V

(14)

Substituting the left-hand side back into eqn. (8), we find

cP = cV + T

(
∂P

∂T

)
V

(
∂V

∂T

)
P

. (15)

Finally, to reproduce the result given in eqn. (3.86) of Stellar Interiors, we make use of the triple
differential formula (

∂V

∂T

)
P

(
∂T

∂P

)
V

(
∂P

∂V

)
T

= −1 (16)

(as with eqn. 7, this is just a consequence of the chain rule). Combining the above expressions, we
obtain

cP = cV − T

(
∂P

∂T

)2

V

(
∂P

∂V

)−1

T

. (17)

which is the desired result.
The derivation would have been significantly simpler if we had used the entropy formulation of

the FLOT (eqn. 11) right from the start. However, I did things the long way to emphasize that the
SLOT is also required to obtain the desired result. So, now you know.


