
Assignment 5 — Solutions [Revision : 1.1]

Question 1

See Figs. 1 and 2.

Question 2

The diffusion equation for the radiative luminosity is

Lr,rad = −16πr2acT 3

3κρ
dT
dr
. (1)

If this is written in the form

Lr,rad = −4πr2c
κρ

d(aT 4/3)
dr

, (2)

the term in brackets can be recognized as the radiation pressure Prad. Rearranging, the radiation
pressure gradient is therefore given by

dPrad

dr
= −κρLr,rad

4πr2c
. (3)

Now writing the equation of hydrostatic equilibrium in the form

dP
dr

=
dPgas

dr
+

dPrad

dr
= −ρg, (4)

the radiation pressure gradient can be eliminated to give the gas pressure gradient as

dPgas

dr
= −ρg +

κρLr,rad

4πr2c
. (5)

With a little rearranging, this can be written in the compact form

dPgas

dr
= −ρg

[
1− κLr,rad

4πgr2c

]
. (6)

Based on this expression, it can be seen that there will be a pressure inversion whenever the term
in brackets becomes negative; that is, when

1− κLr,rad

4πgr2c
< 0. (7)

Replacing g with GMr/r
2, this becomes

Γ ≡ κLr,rad

4πGMrc
> 1, (8)

which is the desired result.

Question 3

The radiative temperature gradient is defined by

∇rad =
κLr

4πGMrc

3P
4aT 4

(9)



Figure 1: The dimensionless temperature gradients, plotted as a function of fractional radius, for
the 1M� model. The solid line is ∇; dashed is ∇rad; and dotted is ∇ad. The arrows and labels
indicate the regions where energy is (i) transported by radiation alone, (ii) transported by radiation
and efficient convection, or (iii) transported by radiation and inefficient convection.



Figure 2: As for Fig. 1, but for the 10M� model.



(note that the luminosity here is the total luminosity, not just the radiative luminosity). With some
substitutions, this becomes

∇rad = Γ
Lr

Lr,rad

P

4Prad
= Γ

Lr

Lr,rad

1
4(1− β)

. (10)

Rearranging,

Γ = 4∇rad(1− β)
Lr,rad

Lr
. (11)

Question 4

From Stellar Interiors (eqns. 3.99 and 3.111),

∇ad ≡
Γ2

Γ2 − 1
=

32− 24β − 3β2

2(4− 3β)
. (12)

Question 5

Equation (11) indicates that reducing β pushes the star closer to the Eddington limit Γ = 1.
Assuming for the moment that all the luminosity is transported by radiation (i.e., Lr = Lr,rad), then
the limit will eventually be reached when

∇rad =
4

1− β
. (13)

From this, we can see that for any β > 01, ∇rad > 4 at the Eddington limit.
Looking now at eqn (12), it is easy to show that for any β > 0, ∇ad < 4. Accordingly, for any

β > 0, it must hold that
∇rad > ∇ad (14)

at the Eddington limit. But this can be recognized as the criterion for convection to occur. Hence,
we must conclude that convection kicks in at some point before the star reaches the Eddington limit.

1The β = 0 limit is unphysical, since the gas pressure must be zero and hence the density zero — there is no
matter present!


