
Assignment 4 — Solutions [Revision : 1.2]

Question 1

Stellar Interiors Q3.1

(i). For the first ionization of helium, the appropriate versions of eqn. (3.24) in Stellar Interiors
are
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Chemical equilibrium requires that µ0 = µ1 +µe; hence multiplying the second and third
equations and dividing by the first,
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where χ1 ≡ (m1 +me −m0)c2 is the first ionization potential of helium, and we’ve made
use of the approximation m1me/m0 ≈ me.
Rearranging, we arrive at the desired expression for the neutral/ionized ratio,
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A similar procedure can be used to show that
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(ii). Number conservation requires that

n = n0 + n1 + n2, (7)

while charge neutrality means that

n1 + 2n2 = ne. (8)

Dividing the first expression by n, we have

z0 + z1 + z2 = 1, (9)

where zi ≡ ni/n. Likewise, the second expression can be written as

ne = n(z1 + 2z2). (10)

Thus, the pair of Saha equations become
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with only z1 and z2 as unknowns.



(iii). The above Saha equations are non-linear, and therefore require a multi-variate non-linear
root finder to solve. I use a globally-convergent Newton-Raphson method, built on IDL’s
NEWTON routine (see the course website for the source code). One important trick to
obtaining stable solutions is to bring the denominators of the left-hand sides over to the
right-hand side. For atomic data, I adopt g1ge/g0 = 4, g2ge/g1 = 1, χ1 = 24.6 eV and
χ2 = 54.4 eV.

(iv). Fig 1 shows the ionization state plots for ρ = 10−4 g cm3.

(v). The half-ionization points are at T ≈ 32, 000 K for He+, and T ≈ 81, 000 K for He++

(these values calculated using the same IDL code).

Stellar Interiors Q3.7

(i). The number distribution function for an electron (Fermi) gas is

n(p) =
2
h3

1
exp{[−µ+ E(p)]/kT}+ 1

(13)

(for consistency with the way the question is posed, I’ve neglected the mc2 rest-mass
energy term; this doesn’t affect the results). Let us assume non-relativistic dynamics
(since we’re looking for a correction to Maxwell-Boltzmann thermodynamics), so that
the kinetic energy is given by

E(p) =
p2

2m
. (14)

Then, in the near-classical limit (µ/kT � −1), the distribution function can be approxi-
mated to first order by

n(p) =
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]
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where, as defined in the question, K ≡ exp(µ/kT ). The total number density is found
from

n =
∫ ∞
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(Stellar Interiors, eqn. 3.10); substituting in the above expression for n(p) and chugging
through the integral then gives
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Now making use of the approximation

K ≈ n0h
3
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suggested in the question (with the error in the denominator exponent fixed!) gives the
desired result,
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(note that only the outer K term has been eliminated here).

(ii). The pressure is found from
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∫ ∞
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Figure 1: The ionization state for helium at ρ = 10−4 g cm−3, plotted as a function of temperature.
In the upper panel, the solid line shows the neutral He fraction z0, while the dotted (dashed) line
shows the first- (second-) ionized He fraction z1 (z2). The lower panel shows ze, the number of free
electrons per He nucleus.



(Stellar Interiors, eqn. 3.13, with v = p/m). Substituting in the above expression for
n(p) gives

P =
(2πmkT )5/2

πh3m
(1− 2−5/2K)K. (21)

Again using the approximation for K, this becomes

P = n0kT
(
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)
, (22)

which is the desired result.

Question 2

Stellar Interiors Q4.6

The half-ionization temperatures, calculated using the same IDL code as above for Q3.1, are
listed in Table 1. These do indeed correspond to the bumps seen in Fig. 4.3 (but I’m not going
to take the time to hand-trace the figure).

ρ (g cm−3) T1/2 He+ (K) T1/2 He++ (K)
10−4 32,000 81,000
10−6 22,000 54,000
10−8 17,000 40,000

Table 1: Half-ionization temperatures for helium at different densities.

Stellar Interiors Q4.10

(i). Taking the natural log of eqn. (4.44) of Stellar Interiors,
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where C is a constant. Differentiating with respect to τ ,
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which leads directly to the desired result
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(ii). For constant opacity, eqn. (4.46) gives
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Writing the equation of hydrostatic equilibrium (4.45) as
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Since
dτ = −κρdr (29)

(cf. eqn. 4.8), this becomes
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where the right-most equality comes from the expression above for P (τ). Dividing through
by P ,
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which is the desired result.

(iii). The temperature gradient ∇ can be written as
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At large optical depths, this limits to

∇
τ→∞

= 1/4. (33)

If Γ2 < 4/3, then ∇ad < 1/4. We then have ∇ > ∇ad, indicating that convection will
occur.

Stellar Interiors Q4.11

The Planck function Bν(T ) is

Bν(T ) =
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c2
1
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Differentiating with respect to temperature, we have
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This is the weighting function in the expression (4.22) for the Rosseland mean opacity. It
will afford the most weight to photons when it is maximal. Thus, setting the derivative with
respect to ν to zero, we have

h2ν3
max [4kT − hνmax coth(hνmax/2kT )]
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Rearranging,

νmax =
kT

h

2
coth(hνmax/2kT )
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This equation has an approximate solution νmax ≈ kT/h, because coth(1/2) = 2.16 ≈ 2 and
so the second term on the right-hand side is close to unity. QED.


