
Assignment 2 — Solutions [Revision : 1.2]

Question 1

To obtain the desired density-radius relation, we need to derive an expression for the luminosity in
terms of the density and radius, and then combine this with the empirical L ∝ R3 luminosity-radius
relation.

The stellar luminosity is found by integrating the equation of energy conservation, viz

L =
∫ R

0

dLr

dr
dr =

∫ R

0

4πr2ρεdr. (1)

The nuclear energy release rate depends on the density ρ (assumed constant throughout the star)
and the temperature T , via

ε = ε0ρT
4 (2)

(where ε0 is a constant). Thus, to calculate the stellar luminosity, we’re going to need an expression
for the temperature as a function of radius.

This expression can be found by first solving the equation of hydrostatic equilibrium,

dP
dr

= −GMr

r2
ρ. (3)

For a constant-density star, the mass coordinate Mr is simply the mass of a uniform sphere with
radius r,

Mr =
4πr3ρ

3
. (4)

Hence,
dP
dr

= −4πGrρ2

3
, (5)

and, adopting the surface boundary condition P (R) = 0, the pressure distribution throughout the
star is

P (r) =
2πGρ2

3
(
R2 − r2

)
. (6)

Using the ideal gas law, this is readily transformed into a temperature distribution

T (r) =
2πGρµu

3k
(
R2 − r2

)
. (7)

Combining the above expression with that for ε, the luminosity integral (1) can be evaluated as

L =
8192G4π5R11u4ε0µ

4ρ6

280665 k4
, (8)

or more simply,
L ∝ R11ρ6. (9)

With the L ∝ R3 relation, this becomes

R3 ∝ R11ρ6, (10)

and so
ρ ∝ R−4/3. (11)

Hence, the exponent in the radius-density relation is χ = −4/3, and — because this exponent is
negative — we find that bigger/brighter stars are less dense than smaller/dimmer stars. Voila!


