
Assignment 1 — Solutions [Revision : 1.4]

Question 1

(i). We start with the condition of hydrostatic equilibrium,

dP
dr

= −gρ. (1)

Because the corona contains negligible mass, the gravity g is simply that provided by the Sun,

g =
GM�

r2
. (2)

Moreover, because the corona is isothermal, the density is directly proportional to the pressure,

ρ =
Pµu

kT
, (3)

where the temperature T is presumed constant. With these two expressions, the equation of
hydrostatic equilibrium becomes

dP
dr

= −GM�

r2

Pµu

kT
. (4)

This is integrated to give

lnP =
GM�

R�

µu

kT

R�
r

+ C (5)

where C is the constant of integration. Solving for P ,

P (r) = P� exp
[
GM�

R�

µu

kT

(
R�
r
− 1

)]
, (6)

where P� is the pressure at the base of the corona.

(ii). Setting r →∞ in the above expression, the pressure at infinity is found as

P (∞) = P� exp
[
−GM�

R�

µu

kT

]
, (7)

which is the desired relation.

(iii). From the number density and temperature at the base of the corona, we find P� = 1.38 ×
104 dyne cm−2. The pressure far from the Sun is therefore P (∞) = 9.25× 10−3 dyne cm−2.

(iv). The far-from-the-Sun pressure (9.25× 10−3 dyne cm−2) is much larger than the ambient pres-
sure in the Local Interstellar Cloud (8.28×10−14 dyne cm−2). This means that pressure balance
cannot be achieved between the two. Instead, the corona will continue to expand into the LIC,
resulting in a (non-hydrostatic) wind outflow.

(v). For an adiabatic corona, the equation of hydrostatic equilibrium becomes

dP
dr

= −GM�

r2

P 3/5

K3/5
= −GM�

r2

P 3/5P
2/5
� µu

kT�
(8)

where in the right-most expression the constant K has been rewritten in terms of the pressure
P� and temperature T� at the coronal base. Solving for the pressure,

P 2/5 =
GM�

r

2P 2/5
� µu

5kT�
+ C, (9)



or

P (r) = P�

[
2GM�

5R�
µu

kT�

(
R�
r
− 1

)
+ 1

]5/2

. (10)

At some large but finite r, the quantity in square brackets eventually drops to zero. A little
before this radius is reached, the coronal pressure will be low enough to match the pressure
of the Local Interstellar Cloud, indicating that hydrostatic equilibrium — in balance with the
LIC — can be achieved, with no wind outflow.

Physically, the difference between the two cases lies in the hidden ingredient of isothermality:
an effectively limitless energy supply able to maintain the corona at a (hot) constant temper-
ature. This energy supply keeps the pressure (and pressure gradients) in an isothermal corona
high enough to drive a wind outflow; the kinetic energy required to escape from the parent
star’s gravitational potential well comes ultimately from the thermal energy (heat) added to
maintain isothermality.

Contrast this with an adiabatic corona, whose only supply of energy is the thermal energy it
starts out with. This thermal energy is typically less than the gravitational binding energy
(as can be seen from the fact that the leading term in the square brackets of eqn. 10 exceeds
unity), meaning that the corona remains bound to the star — thus, no wind.

Question 2

Stellar Interiors Q1.1

(i). For luminosity class V, a color index B − V of 1.6 corresponds to an international color
index C = 1.1(B − V ) − 0.18 = 1.58 (Allen 1973, §95); this is closest to a spectral type
of M5 (ibid, §98).

(ii). The distance to the star is calculated from the parallax as d ≡ 1/π = 4 pc. Its distance
modulus is mV −MV ≡ 5 log(d/10 pc) = −1.99, whence the absolute visual magnitude is
found as MV = 11.8. The bolometric correction for an M5V star is B.C. = −2.4 (Allen
1973, §98), giving the bolometric magnitude as Mbol ≡MV +B.C. = 9.39. The luminosity
can be found by using the Sun as a reference: Mbol −Mbol,� = −2.5 log(L/L�), with
Mbol,� = 4.75 (Stellar Interiors, Appendix A), gives L = 1.4× 10−2 L�.

(iii). The effective temperature for an M5V star is Teff = 2, 800K. The radius is found from
L = 4πR2σT 4

eff , as 0.50R�.
(iv). The mass can be estimated from the surface gravity, g = GM/R2. Assuming g ≈

2.8 cms−2 (the same as the Sun) then gives M ≈ 0.26M�. This is close to the M =
0.22M� quoted by Allen (1973, §98) for an M5V star.

Stellar Interiors Q1.6

(i). The orbital energy of the planet, added to the star as it accretes, is equal to its circular-
orbit kinetic energy,

∆W =
mv2

2
=
GMm

2R
. (11)

(as instructed, we’re neglecting gravitational and chemical energies).
(ii). If

Ω = −qGM
2

R
, (12)

then

∆Ω = Ω
[
2

∆M
M
− ∆R

R

]
= −qGM

2

R

[
2
m

M
− ∆R

R

]
(13)

(assuming ∆q = 0).



(iii). The virial theorem relates the change in total and gravitational energies, as

∆W =
3γ − 4

3(γ − 1)
∆Ω. (14)

Substituting in the expressions for ∆W and ∆Ω gives

GMm

2R
= −q 3γ − 4

3(γ − 1)
GM2

R

[
2
m

M
− ∆R

R

]
. (15)

Solving for the fractional radius change,

∆R
R

= 2
m

M
+

m

2Mq

3(γ − 1)
3γ − 4

. (16)

(iv). With γ = 5/3, q = 3/2, M = M� and m = MJup, ∆R = 2.5× 10−3R�.

Stellar Interiors Q1.10

For a constant-density sphere, the gravitational binding energy is

Ω = −3GM2

5R
, (17)

which for the Sun evaluates to −2.3 × 1048 erg. The corresponding ‘mass defect’ due to
gravitational binding is Ω/c2 = −2.5 × 1027 g, giving a fractional mass change ∆M�/M� =
−1.3× 10−6.

Question 3

See Fig. 1 for the plot.



Figure 1: The evolutionary track, in the H-R diagram, of the solar-mass EZ-Web model.


