Astronomy 715 — Final Exam — Solutions

Question 1

().

(ii).

The equation of hydrostatic equilibrium is
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This corresponds to the scaling
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where P and rho represent the central pressure and density of the star, respectively, and
constant terms (in this case, ) are dropped here and throughout. With p ~ M/R3 (from the
equation of mass conservation), the scaling becomes
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the corresponding scaling for the temperature can be found as
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To determine the luminosity, we now turn to the radiative diffusion equation,

_ 167r2acT? dT

L . 6
" 3kp dr ()
This gives the scaling relation
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Eliminating the temperature from this expression,
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where all dependence on R has dropped out. Thus, because for electron scattering « is fixed,
we have L ~ M3u*, which is the desired result. To derive this, we have not needed the equation
of energy conservation, and thus this scaling is independent of the mode of energy generation.

[5 points]

If the opacity is dominated by bound-free absorption, then it will follow a Kramers’ law:
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When this is substituted into the expression (8) for L, it is clear there will be a residual R
term. This term can only be eliminated by introducing further equations — the equation of
energy conservation, and the energy generation equation giving € in terms of p and T'. Thus,
the mass-luminosity relation now depends on the mode of energy generation.



[2 points]

(iii). If radiation pressure is dominant, then the ideal-gas equation of state is replaced by
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Substituting this into the expression (7) for L, we now have
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For fixed k, this gives us the mass-luminosity relation L ~ M, which does not depend on
composition. This sort of relation applies to massive main-sequence stars, in which the opacity
is primarily electron-scattering and the pressure is dominated by radiation pressure.

[3 points]



Question 2

().

(ii).

Plot (a) must be electron-scattering opacity, because x) is independent of wavelength. Plot
(b) must be bound-free opacity, because k) shows a prominent edge caused when photons
have sufficient energy (or a short enough wavelength) to ionize from a certain bound state.
Plot (¢) must be bound-bound opacity, because k) is non-zero only at discrete wavelengths
corresponding to the energy difference between pairs of bound states.

[3 points]

. The radiative diffusion equation is
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where L,prqq is the radiative flux. The temperature gradient can be written in terms of V, as
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The equation of hydrostatic equilibrium can then be used to eliminate the pressure gradient,
so that
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Substituting this back into the diffusion equation, and solving for V, we have
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which is the desired result.
[3 points]

Via the Schwarzschild criterion, convection will commence when V,,q > V.q — that is, when
the radiative temperature gradient V,,q is large. The radiative temperature gradient is defined
as the V that would result if all the energy were transported by radiative luminosity. Therefore,
setting Lyoq = L in eqn. (16), we have
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From this expression, we see that V,,q will be large (and convection will commence) when (a)
K is large, or when (b) L/r? is large.

[2 points]

. Case (a) typically arises in the envelopes of lower-mass main-sequence stars, because the high

densities and low temperatures in these envelopes lead to significant bound-free opacity (and
hence large k). Case (b) typically arises in the cores of higher-mass main-sequence stars,
because the central concentration of energy generation (a result of CNO-cycle burning) results
in a large luminosity near the origin, and hence a large L/r?.

[2 points]



Question 3

().

(ii).

For (a), the hydrogen abundance profile reveals the star is post-main sequence, because X = 0
throughout the core. The temperature profile shows that the core is close to isothermal,
indicating it must be degenerate. Hence, the star must be low-mass.

For (b) the hydrogen abundance profile reveals that the star is still on the main sequence
(X > 0 in the core), and also that there is convection occurring in the core. Hence, the star
must be high-mass.

[2 points]

. From above, (a) is post-main sequence — specifically, red giant branch, and (b) is main-

sequence.
[2 points]

Because (a) is on the RGB, it must have a low effective temperature and therefore a late
spectral type. Because (b) is massive and still on the main sequence, it must have a high
effective temperature and therefore an early spectral type.

[2 points]

. (a) has a hydrogen-burning shell at M,/M ~ 0.33. (b) is burning hydrogen in the core,

0<M,/M <0.3.

[2 points]

. (a) will probably become a carbon-oxygen white dwarf; however, if the mass is < 0.8 M, it

will become a helium white dwarf. If (b) has a mass < 9 Mg, it will become a white dwarf
also (CO, or perhaps Ne); above this limit, it will explode as a core-collapse supernova.

[2 points]



Question 4

().

(ii).

The Saha equation for hydrogen takes the form

NeN g+

= f(T) (18)

ngo
where f(T) is a monotonic-increasing function of T'. At half-ionization, we have

5 = 1(Ty). (19)
indicating that T}/, must rise (fall) as n. rises (falls). Looking now at the three cases, the
highest T} s, will occur in case (c), because the inclusion of metals (which are generally easier
than H to ionize) will introduce lots of free electrons. Likewise, the lowest T3/, will occur in
case (b), because the inclusion of helium (which is harder than H to ionize) will cause a deficit
of free electrons.

[2 points]

. At zero temperature, n(p) is given by
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up to the Fermi momentum pg, at which point it drops to zero. See Fig. 1. Note that this
question wasn’t worded well, and answers that give n(p) = 1/h3 up to pr will also be considered
valid.

[2 points]

At zero temperature (implied in the question), the total number density is given by

_ %q :F o2 dp, (21)
Integrating,
n= ?Tgp% (22)
Rearranging, s
= (S0) (23)
which is the final result.
[3 points]
. For a Bose-Einstein gas at temperature 7T,
n(p)dp = 2 i ap 24)
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In applying this to photons, we set ;1 = 0 (since photon numbers are not conserved), and g = 2
(to account for the two possible photon polarizations). Hence
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Figure 1: The distribution function for a Fermi gas at zero temperature, showing the Fermi momen-

tum pp. The axis scales are arbitrary.

This is the number of photons per unit volume in a momentum interval dp. The spectral

energy density can be calculated by multiplying by the energy per photon, so that

u,dv = n(p)E(p)dp

Thus,
dp
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For photons, F(p) = pc = hv, and also
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Therefore, the spectral energy density is
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which is the final result.
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[3 points]



