
Astronomy 715 — Final Exam — Solutions

Question 1

(i). The equation of hydrostatic equilibrium is

dP
dr

� �
GMr

r2
ρ. (1)

This corresponds to the scaling
P

R
�
M

R2
ρ, (2)

where P and rho represent the central pressure and density of the star, respectively, and
constant terms (in this case, G) are dropped here and throughout. With ρ �M{R3 (from the
equation of mass conservation), the scaling becomes

P �
M2

R4
. (3)

Assuming an ideal gas

P �
ρkT

µu
, (4)

the corresponding scaling for the temperature can be found as

T �
P

ρ
µ �

PR3

M
µ �

M

R
µ. (5)

To determine the luminosity, we now turn to the radiative diffusion equation,

Lr �
16πr2acT 3

3κρ
dT
dr
. (6)

This gives the scaling relation

L �
RT 4

κρ
�
R4T 4

κM
. (7)

Eliminating the temperature from this expression,

L �
R4M4

R4M

µ4

κ
�M3µ

4

κ
, (8)

where all dependence on R has dropped out. Thus, because for electron scattering κ is fixed,
we have L �M3µ4, which is the desired result. To derive this, we have not needed the equation
of energy conservation, and thus this scaling is independent of the mode of energy generation.

[5 points]

(ii). If the opacity is dominated by bound-free absorption, then it will follow a Kramers’ law:

κ � ρT�3.5 �
M

R3

R3.5

M3.5µ3.5
� R0.5M�2.5µ�3.5 (9)

When this is substituted into the expression (8) for L, it is clear there will be a residual R
term. This term can only be eliminated by introducing further equations — the equation of
energy conservation, and the energy generation equation giving ε in terms of ρ and T . Thus,
the mass-luminosity relation now depends on the mode of energy generation.
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[2 points]

(iii). If radiation pressure is dominant, then the ideal-gas equation of state is replaced by

P �
aT 4

3
, (10)

so that

T 4 � P �
M2

R4
. (11)

Substituting this into the expression (7) for L, we now have

L �
R4M2

κR4
�
M

κ
. (12)

For fixed κ, this gives us the mass-luminosity relation L � M , which does not depend on
composition. This sort of relation applies to massive main-sequence stars, in which the opacity
is primarily electron-scattering and the pressure is dominated by radiation pressure.

[3 points]
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Question 2

(i). Plot (a) must be electron-scattering opacity, because κλ is independent of wavelength. Plot
(b) must be bound-free opacity, because κλ shows a prominent edge caused when photons
have sufficient energy (or a short enough wavelength) to ionize from a certain bound state.
Plot (c) must be bound-bound opacity, because κλ is non-zero only at discrete wavelengths
corresponding to the energy difference between pairs of bound states.

[3 points]

(ii). The radiative diffusion equation is

Lrad � �
16πr2acT 3

3κρ
dT
dr
, (13)

where Lrmrad is the radiative flux. The temperature gradient can be written in terms of ∇, as

dT
dr

� T
d lnT

dr
� T

d lnT
d lnP

d lnP
dr

�
T∇
P

dP
dr

. (14)

The equation of hydrostatic equilibrium can then be used to eliminate the pressure gradient,
so that

dT
dr

� �
T∇ρg
P

(15)

Substituting this back into the diffusion equation, and solving for ∇, we have

∇ �
3LradκP

16πr2acT 4g
, (16)

which is the desired result.

[3 points]

(iii). Via the Schwarzschild criterion, convection will commence when ∇rad ¡ ∇ad — that is, when
the radiative temperature gradient ∇rad is large. The radiative temperature gradient is defined
as the∇ that would result if all the energy were transported by radiative luminosity. Therefore,
setting Lrad � L in eqn. (16), we have

∇rad �
3LκP

16πr2acT 4g
. (17)

From this expression, we see that ∇rad will be large (and convection will commence) when (a)
κ is large, or when (b) L{r2 is large.

[2 points]

(iv). Case (a) typically arises in the envelopes of lower-mass main-sequence stars, because the high
densities and low temperatures in these envelopes lead to significant bound-free opacity (and
hence large κ). Case (b) typically arises in the cores of higher-mass main-sequence stars,
because the central concentration of energy generation (a result of CNO-cycle burning) results
in a large luminosity near the origin, and hence a large L{r2.

[2 points]
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Question 3

(i). For (a), the hydrogen abundance profile reveals the star is post-main sequence, because X � 0
throughout the core. The temperature profile shows that the core is close to isothermal,
indicating it must be degenerate. Hence, the star must be low-mass.

For (b) the hydrogen abundance profile reveals that the star is still on the main sequence
(X ¡ 0 in the core), and also that there is convection occurring in the core. Hence, the star
must be high-mass.

[2 points]

(ii). From above, (a) is post-main sequence — specifically, red giant branch, and (b) is main-
sequence.

[2 points]

(iii). Because (a) is on the RGB, it must have a low effective temperature and therefore a late
spectral type. Because (b) is massive and still on the main sequence, it must have a high
effective temperature and therefore an early spectral type.

[2 points]

(iv). (a) has a hydrogen-burning shell at Mr{M � 0.33. (b) is burning hydrogen in the core,
0  Mr{M   0.3.

[2 points]

(v). (a) will probably become a carbon-oxygen white dwarf; however, if the mass is À 0.8Md, it
will become a helium white dwarf. If (b) has a mass À 9Md, it will become a white dwarf
also (CO, or perhaps Ne); above this limit, it will explode as a core-collapse supernova.

[2 points]
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Question 4

(i). The Saha equation for hydrogen takes the form

nenH�

nH0
� fpT q (18)

where fpT q is a monotonic-increasing function of T . At half-ionization, we have

ne
2
� fpT1{2q, (19)

indicating that T1{2 must rise (fall) as ne rises (falls). Looking now at the three cases, the
highest T1{2 will occur in case (c), because the inclusion of metals (which are generally easier
than H to ionize) will introduce lots of free electrons. Likewise, the lowest T1{2 will occur in
case (b), because the inclusion of helium (which is harder than H to ionize) will cause a deficit
of free electrons.

[2 points]

(ii). At zero temperature, nppq is given by

nppq �
g

h3
4πp2 (20)

up to the Fermi momentum pF, at which point it drops to zero. See Fig. 1. Note that this
question wasn’t worded well, and answers that give nppq � 1{h3 up to pF will also be considered
valid.

[2 points]

(iii). At zero temperature (implied in the question), the total number density is given by

n �
4πg
h3

» pF
0

p2 dp. (21)

Integrating,

n �
4πg
3h3

p3
F. (22)

Rearranging,

pF �

�
3h3n

4πg


1{3

, (23)

which is the final result.

[3 points]

(iv). For a Bose-Einstein gas at temperature T ,

nppqdp �
g

h3

4πp2

expprEppq � µs{kT q � 1
dp (24)

In applying this to photons, we set µ � 0 (since photon numbers are not conserved), and g � 2
(to account for the two possible photon polarizations). Hence

nppqdp �
2
h3

4πp2

exppEppq{kT q � 1
dp (25)
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Figure 1: The distribution function for a Fermi gas at zero temperature, showing the Fermi momen-
tum pF. The axis scales are arbitrary.

This is the number of photons per unit volume in a momentum interval dp. The spectral
energy density can be calculated by multiplying by the energy per photon, so that

uνdν � nppqEppqdp (26)

Thus,

uν � nppqEppq
dp
dν

(27)

For photons, Eppq � pc � hν, and also

dp
dν

�
h

c
. (28)

Therefore, the spectral energy density is

uν �
8πh2ν2hν

h3c2
1

expphν{kT q � 1
h

c
�

8πhν3

c3
1

expphν{kT q � 1
. (29)

which is the final result.

[3 points]
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