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The Approach to the Main Sequence
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Figure 1: The surface luminosity L,
nuclear luminosity Lnuc and stellar
radius R, plotted as a function of age
for a MESA model of the Sun. The age
is measured relative to the arbitrary
point on pre-main sequence when
L = 103 L�. The vertical dashed line
shows the zero-age main sequence
(ZAMS), where Lnuc first matches L;
note how the radius stops changing
from the ZAMS onward.

As a pre-main sequence (PMS) star approaches the main sequence,
the ignition of hydrogen fusion deep within its core slows and even-
tually halts its Kelvin-Helmholtz contraction. To see why, we re-write
the stellar energy conservation equation (eqn. 1 of Handout viii) as

dE
dt

= Lnuc − L, (1)

where the new term Lnuc represents the total energy produced per
second by nuclear reactions within the star — its nuclear luminosity.
Early during the PMS phase Lnuc is negligible, and so the star neces-
sarily loses energy with time (dE/ dt < 0) and contracts. However,
near the main sequence Lnuc ramps up rapidly, reducing the rate-of-
loss of energy and slowing the rate of contraction. Eventually, Lnuc is
large enough to match the surface luminosity L, such that the star is
generating energy as fast as it is losing it. This point formally defines
the zero-age main sequence (ZAMS), and with no further energy
loss from the star, the Kelvin-Helmholtz contraction ceases. Fig. 1

demonstrates the approach to the ZAMS for a model of the Sun.

Evolution in the Density-Temperature Plane

To understand why hydrogen fusion ramps up near the main se-
quence, let’s first note that this fusion involves thermonuclear reac-
tions — ones primarily driven by high temperature. Once the central
temperature Tc of a star reaches a threshold Tc ≈ 107 K, depending
on the density), the reaction rate rapidly climbs.

A useful way to visualize the approach to this ignition threshold
is to plot the path followed by the star in the log ρc–log Tc plane.
Fig. 2 shows a number of these paths, for stars in the mass range
0.1 M� ≤ M ≤ 10 M�1. The paths all take a similar form: starting 1 We will discuss the 0.03 M� case

separately, belowat low central density and temperature, they evolve toward higher
density due to KH contraction, and this evolution is accompanied
by an steady increase in temperature. Eventually, Tc reaches the
threshold for hydrogen ignition.

The paths followed by the stars are well approximated by parallel
straight lines. To understand this behavior, let’s estimate the central
pressure of a star as2 2 This expression is based on the lower

limit derived in eqn. (8) of Handout v,
with the factor 8π dropped from the
denominator.

Pc ≈
GM2

R4 . (2)

Using the ideal-gas EOS (eqn. 4 of Handout vi), we express the central
pressure in terms of the central density and temperature, so that

ρckBTc

µmH
≈ GM2

R4 . (3)
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Figure 2: Paths followed by pre-main
sequence stars in the log ρc–log Tc
plane. Each path is labeled at its start
by the stellar mass in M�. The dashed
line shows the locus in the plane where
hydrogen fusion ignites. Note that the
path for M = 0.03 M�, which doesn’t
reach the ignition line, is for a brown
dwarf rather than a star.

Then, with the order-of-magnitude estimate R ≈ (M/ρc)1/3, we
can eliminate the radius to find a relationship between log Tc and
log ρc:

log Tc ≈
1
3

log ρc +
2
3

log M + C (4)

where C is a constant depending on µ and other quantities. This
equation explains the behavior seen in Fig. 2: a contracting star
follows a straight-line path in the log ρc-log Tc plane, with slope
dlog Tc/ dlog ρc ≈ 1/3. More-massive stars follow parallel paths
displaced toward high temperatures and/or lower densities.

Let’s now briefly consider the M = 0.03 M� path in the figure,
which describes the evolution of a brown dwarf — a sub-stellar object
that never reaches a temperature sufficiently high for hydrogen ig-
nition. As the brown dwarf contracts, the core temperature rises to a
maximum Tc ≈ 106 K before decreasing again. Such behavior, which
departs from the scaling given in eqn. (4), occurs because the elec-
trons become degenerate3in the core of the brown dwarf. A similar

3 Meaning that they depart from the
ideal-gas EOS. The departure originates
from the Pauli exclusion principle of
quantum mechanics, which prohibits
two fermions from being packed
into the same state. We’ll discuss
degeneracy in further detail in a later
lecture.

fate is shared by all objects with masses M . 0.08 M�.

A First Look at Hydrogen Fusion

Without going into the specific details, we can write the reaction for
the fusion of hydrogen into helium as

41H + 4 e−︸ ︷︷ ︸
4 hydrogen atoms

−→ 4He + 2 e−︸ ︷︷ ︸
helium atom

+ 2 νe + N γ︸ ︷︷ ︸
energy

(5)

where νe denotes an electron neutrino, and N γ indicates some num-
ber of photons. There are typically many ways to write this reaction;
however, the form given here is special in that not only does it con-
serve baryon number, lepton number and charge (as all valid versions
of the reaction must), but each side is set up to have zero net charge.

Isotope Atomic Mass (u)
1H 1.007 825

4He 4.002 603
12C 12.000 000
14N 14.003 074
16O 15.994 915

Table 1: Atomic masses (in atomic
mass units, 1 u = 1.6605× 10−24 g =
931.5 MeV) for selected isotopes. From
Table D of Audi & Wapstra (1993, Nucl.
Phys A., 565, 1).

This makes it possible to group together particles into discrete
atoms, and so the energy release from the reaction, ∆E , can be ex-
pressed in terms of atomic masses (see Tab. 1):

∆E = [4mH −mHe] c2 = 0.028 698 uc2 = 26.73 MeV. (6)

Some fraction4of this energy goes into the two neutrinos, which

4 The precise fraction depends on the
details of how the hydrogen fusion
occurs. We’ll discuss these details in
a later lecture; for now, note that the
process is more complicated than four
protons magically coming together.

escape from the star without further interaction, while the remainder
(typically denoted Q) is released locally into the star as photons.

Further Reading

Kippenhahn, Weigert & Weiss, §§18.1,18.5.3; Ostlie & Carroll, §10.3;
Prialnik, §§4.1,4.3.
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