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General Equation of State

The pressure P and density ρ of stellar material are connected by the
equation of state (EOS) governing the material. Most generally, the
EOS is written

P = Pion + Pel + Prad (1)

where Pion is the pressure due to ions1, Pel the pressure due to free

1 Here, we use ‘ions’ generically to
denote atoms in any ionization state
— whether neutral (when the atoms
have their full complement of bound
electrons), fully ionized (when the
atoms have lost their bound electrons
into the pool of free electrons), or some
partially ionized state.

electrons resulting from ionization, and Prad the radiation pressure
due to photons. All three of these depend on ρ and the temperature
T of the material (see Fig. 1).
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Figure 1: The temperature T, density
ρ and pressure P (in units of their
central values Tc = 1.58 × 107 K,
ρc = 160 g cm−2, Pc = 2.42 × 1017

dyn cm−2), plotted as a function of
radial coordinate r for a MESA model
of the present-day Sun.

Ideal-Gas Equation of State

For low- and intermediate-mass stars on the main sequence (includ-
ing the Sun), the radiation pressure is negligible, and the ion and
free-electron pressures follow the ideal-gas law2. Thus, we can write

2 In an ideal gas, collisions between
particles are perfectly elastic, and there
are no inter-molecular forces. The ideal-
gas law is often written as PV = N kB T,
where V is the volume and N is the
number of particles contained in the
volume. However, when dealing with
stellar interiors it is more convenient
to use an intrinsic version of the law:
P = n kB T, where n ≡ N/V is the
number density of particles.

Pion = nion kB T, Pel = nel kB T, (2)

where nion is the number density of ions, and nel the number density
of free electrons. Substituting these expressions into the general
EOS (1), and neglecting the Prad term, we obtain

P = n kB T, (3)

where n ≡ nion + nel is the total particle number density. Often, we
further eliminate n to write the EOS as

P =
ρ kB T
µ mH

, (4)

where we introduce the mean molecular weight3

3 In spite of its name, the mean molec-
ular weight has nothing to do with
molecules or weight.

µ ≡ ρ

n mH
(5)

as the average mass per particle (ions and free electrons), expressed in
units of the hydrogen atomic mass mH.

Composition & Mean Molecular Weight

The mean molecular weight of stellar material depends both on its
composition and its ionization state. Composition is usually specified
by mass fractions, which quantify what fraction by mass is composed
of a given element. By convention, X denotes the mass fraction of
hydrogen, Y the mass fraction of helium, and Z ≡ 1− X − Z the mass
fraction of metals4.

4 Another weird nomenclature choice:
‘metals’, to astronomers, are all ele-
ments that aren’t hydrogen and helium.
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The mean molecular weight in the neutral limit is approximated
by

µ ≈
[

X +
Y
4
+

Z
12

]−1
(6)

The corresponding value in the fully ionized limit is likewise approx-
imated by

µ ≈
[

2X +
3Y
4

+
Z
2

]−1
(7)

A later handout will discuss the origin of these formulae, and how
to evaluate µ for partially ionized samples. Fig. 2 shows how these
formulae apply to the present-day Sun.
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Figure 2: The mean molecular weight
µ, and hydrogen (X) and helium (Y)
mass fractions, plotted as a function
of temperature T for the MESA model
of the present-day Sun (cf. Fig. 1). The
composition of the Sun at birth was
X = 0.70, Y = 0.28 and Z = 0.02, and
these values still apply for T . 8 × 106

K. At higher temperatures, however, the
hydrogen composition is depleted, and
the helium composition is enriched; this
is the result of the ongoing fusion of
hydrogen into helium. With declining
temperature below T ≈ 2 × 105 K, the
transition from fully ionized to neutral
causes the increase in µ from the value
µ ≈ 0.62 given by eqn. (7), to the value
µ ≈ 1.30 given by eqn. (6).

Isothermal & Adiabatic Changes

Sometimes, we wish to know how stellar material responds to
changes in its thermodynamic state. For an isothermal change the
temperature of the material remains constant; then, the pressure fol-
lows the relation

P = Kiso ρ, (8)

where the constant Kiso is set by the temperature and composition
of the material. Likewise, for an adiabatic change there is no heat
absorbed or released by the material; then, the pressure follows the
relation

P = Kad ργ, (9)

where the constant Kad is set by the initial temperature and composi-
tion of the material. In both the neutral and fully ionized limits, the
exponent γ (which is formally known as the ‘ratio of specific heats’)
takes the value 5/3; however, in the partially ionized case its value is
usually closer to 1.

Internal Energy

For the ideal-gas EOS (4), the internal (or thermal) energy per unit
mass is

u =
1

γ − 1
kBT

µ mH
≈ 3kBT

2µ mH
, (10)

where the second equality applies when γ = 5/3.

Further Reading

Kippenhahn, Weigert & Weiss, §§4.1–4.2; Ostlie & Carroll, §10.2; Prialnik,
§§3.1–3.1.
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