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The Momentum Conservation Equation
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Figure 1: A cylindrical volume element
with cross sectional area dA, extending
between radial coordinates ra to rb. This
element is acted on by both pressure (P)
and gravitational forces (g), as shown.

Consider a vertically oriented cylindrical volume element with cross-
sectional area dA, extending from radial coordinate ra out to radial
coordinate rb (see Fig. 1). Denoting the net radial force on this ele-
ment as f , and the net radial momentum of the element as p, New-
ton’s second law1applied to the element is

1 While the second law is often given as
force is mass times acceleration, it is more
correctly stated as force is rate-of-change
of momentum.

f =
dp
dt

(1)

The momentum of the element can be evaluated via the integral

p =
∫ rb

ra
ρvr dr dA (2)

where vr is the radial velocity. The force on the element comes from a
combination of pressure P acting on the lower and upper ends of the
cylinder, and the gravitational acceleration g acting throughout:

f =

[
P(ra)− P(rb)

]
dA︸ ︷︷ ︸

pressure force

+
∫ rb

ra
gρ dr dA︸ ︷︷ ︸

gravitational force

. (3)

Applying the fundamental theorem of calculus2, we can write the 2 This is the theorem that∫ b

a

dy
dx

dx = y(b)− y(a).
pressure term as an integral:

f = −
∫ rb

ra

dP
dr

dr dA +
∫ rb

ra
gρ dr dA. (4)

Substituting this and eqn. (2) back into Newton’s second law (1),
and dividing through by dA, we arrive at the momentum conservation
equation for the element:

−
∫ rb

ra

[
dP
dr

− ρg
]

dr =
d
dt

∫ rb

ra
ρvr dr (5)
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Figure 2: The pressure P (in units
of its central value Pc = 2.42 × 1017

dyn cm−2), its gradient dP/ dr and
the gravitational force per unit volume
ρg (both in units of Pc/R), plotted as
a function of radial coordinate r for
a MESA model of the present-day
Sun. The close match between dP/ dr
and ρg indicates that the model is in
hydrostatic equilibrium.

Hydrostatic Equilibrium

Now let’s suppose that the velocity throughout the star vanishes, so
the right-hand side of the momentum conservation equation (5) is
zero for every possible choice of ra and rb. It then follows that the
integrand on the left-hand side of the equation must also be zero;
that is,

dP
dr

= ρg (6)

This is the equation of hydrostatic equilibrium. It establishes the basic
condition that must be satisfied at every point in a star, in order for
the stellar material to remain in static (zero velocity) equilibrium.
In words, the outward force due to the pressure gradient must balance the
inward force due to gravity. Fig. 2 demonstrates hydrostatic equilibrium
in action for a model of the Sun.
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Central Pressure

The hydrostatic equilibrium equation (6) provides us with a simple
way to place a lower limit on the central pressure Pc of a star. Inte-
grating the equation, we can write3 3 In the second equality we have used

the mass equation (eqn. 2 of Handout
iv) to switch to an integral over interior
mass m, and likewise expressed the
gravity in terms of m and r.

Ps − Pc =
∫ R

0
gρ dr = −

∫ M

0

Gm
4πr4 dm, (7)

The surface pressure Ps is much smaller than Pc, and can be ne-
glected to yield

Pc = −
∫ M

0

Gm
4πr4 dm >

GM2

8πR4 . (8)

Applying this to the present day Sun, we find Pc > 4.48 × 1014

dyn cm−3 = 4.42 × 108 atm. Comparing this inequality against the
actual value of Pc (see Fig. 2), we can see that its a pretty loose lower
limit.

The Dynamical Timescale

Imagine that all pressure forces in a star suddenly vanish. Then,
the star will begin to collapse under its own gravitational force. The
initial acceleration of the surface layers is

gs =
GM
R2

Assuming that this acceleration remains constant, the time taken for
these surface layers to collapse down to the origin is

∆t =

√
2R
gs

=

√
2R3

GM

This motivates us to define the dynamical timescale of the star as

τdyn ≡
√

R3

GM
. (9)

This quantity represents the characteristic timescale over which the
star responds to departures from hydrostatic equilibrium. After any
perturbation which pushes a star out of hydrostatic equilibrium4, 4 For instance, the gravitational force

arising from the nearby passage of
another star.

the star will (if able) come back into hydrostatic equilibrium on a
timescale τdyn. Turning this statement around, when considering
physical processes that unfold over timescales longer than τdyn, we
can assume that stars remain in almost-perfect hydrostatic equilib-
rium.

Further Reading

Kippenhahn, Weigert & Weiss, §2.1; Ostlie & Carroll, §10.1; Prialnik, §2.3.
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