Spherical Symmetry

Under the assumption of spherical symmetry¹ the physical quantities describing the structure of a star — density, pressure, temperature, etc. — depend only on the radial coordinate r. The center of the star is at r = 0, by definition; likewise, remembering that R denotes the stellar radius, the surface of the star is at r = R.

Mass Equation

The distribution of matter in a star is described by a pair of connected functions: $\rho(r)$ is the local density at radial coordinate r, while m(r) is the mass of the star contained within the sphere with radius r. This latter quantity is often known as the *interior mass*, to distinguish it from the total stellar mass $M \equiv m(R)$.

The density and interior mass are related by the mass equation

$$m(r') = \int_0^{r'} 4\pi r^2 \rho \,\mathrm{d}r, \tag{1}$$

which can also be written in the differential form

$$\frac{\mathrm{d}m}{\mathrm{d}r} = 4\pi r^2 \rho. \tag{2}$$

Because dm/dr is always positive, *m* is a monotonic-increasing function of *r*. Therefore, there is a one-to-one mapping between interior mass and radial coordinate, and we can use *m* itself as a coordinate for specifying location within the star. For instance, m = 0.75 M corresponds to any point on a sphere positioned so that 75% of the star's mass lies inside, and the remaining 25% outside.

Fig. 1 illustrates the density and interior mass functions for a model of the Sun. The matter at the center is around 160 times more dense than water, yet it remains in a gaseous state due to its high temperature. Moving from the center to the surface, the density drops rapidly while the interior mass grows steadily.

Gravitational Field

Stars are held together by the gravitational field arising from their mass. This field is described by the gravitational potential Φ , which satisfies the *spherical Poisson equation*

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}\Phi}{\mathrm{d}r}\right) = 4\pi G\rho.$$
(3)

Here, *G* is the universal constant of gravitation². Multiplying both

Stellar Astrophysics

¹ For most stars, this is a very good approximation. Exceptions can arise when a star is rotating rapidly, or when it is distorted by the tidal forces of a binary companion; but we'll neglect these complications for now.

Figure 1: The density ρ (in units of its central value $\rho_c = 160 \text{ g cm}^{-3}$) and interior mass *m* (in units of its surface value $M = M_{\odot} = 1.989 \times 10^{33}$ g), plotted as a function of radial coordinate *r* for a *MESA* model of the present-day Sun.

² In cgs units, this has the value $G = 6.674 \times 10^{-8}$ cm s⁻² g⁻¹.

Rich Townsend

sides by r^2 and integrating with respect to r, we obtain an expression for the gravitational acceleration (also known just as the *gravity*),

$$g \equiv -\frac{\mathrm{d}\Phi}{\mathrm{d}r} = -\frac{Gm}{r^2}.$$
 (4)

Formally, this can be integrated again to obtain the gravitational potential

$$\Phi(r') = -\int_0^{r'} \frac{Gm}{r^2} \, \mathrm{d}r + C, \tag{5}$$

where the constant *C* is usually chosen so that $\lim_{r\to\infty} \Phi = 0$. In most cases, however, it is not possible to evaluate this integral analytically.

Fig. 2 illustrates the potential and gravity for the same solar model shown in Fig. 1. The gravity is strongest around $\simeq 0.25 R$, and drops to zero at the center of the star (where the potential is at its minimum).

Gravitational Potential Energy

Imagine building a star layer-by-layer, by bringing each layer down from infinity to its final position. When adding a new layer at coordinates *r* and *m*, the gravitational potential is $\Phi = -Gm/r$; therefore, the potential energy of the layer is

$$\mathrm{d}U \equiv \Phi \,\mathrm{d}m = -\frac{Gm}{r} \,\mathrm{d}m,\tag{6}$$

where d*m* is the layer's mass. Integrating over all layers, we obtain the *gravitational potential energy* of the star

$$U \equiv \int \mathrm{d}U = -\int_0^M \frac{\mathrm{G}m}{r} \,\mathrm{d}m. \tag{7}$$

As with the potential, in most cases it is not possible to evaluate this integral analytically³. For simplicity, we will often express the gravitational energy as

$$U = -f_U \frac{GM^2}{R},\tag{8}$$

where the 'shape factor' f_U is a number of order unity. For the solar model shown in Figs. 1 and 2, $f_U = 1.67$ and the gravitational potential energy is $U = -6.12 \times 10^{48}$ erg. With a luminosity $L_{\odot} = 3.83 \times 10^{33}$ erg s⁻¹, the Sun could survive for 5.07×10^7 yr by converting its gravitational energy into light; this is a long time by human standards, but very short compared to the age of the Sun.

Further Reading

Kippenhahn, Weigert & Weiss, §§1.1–1.3; *Ostlie & Carroll,* §§2.2,10.1; *Prialnik,* §1.3.

Stellar Astrophysics

Figure 2: The gravity *g* (in units of its surface magnitude $GM/R^2 = 2.69 \times 10^3$ cm s⁻²) and gravitational potential Φ (in units of its surface magnitude $GM/R = 1.89 \times 10^{15}$ cm² s⁻²), plotted as a function of radial coordinate *r* for the *MESA* model of the present-day Sun (cf. Fig. 1).

³ Although the integral looks rather straightforward, don't forget that *r* in the integrand itself depends on *m* in some complicated fashion