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Spherical Symmetry

Under the assumption of spherical symmetry1 the physical quantities 1 For most stars, this is a very good
approximation. Exceptions can arise
when a star is rotating rapidly, or when
it is distorted by the tidal forces of a
binary companion; but we’ll neglect
these complications for now.

describing the structure of a star — density, pressure, temperature,
etc. — depend only on the radial coordinate r. The center of the star
is at r = 0, by definition; likewise, remembering that R denotes the
stellar radius, the surface of the star is at r = R.

Mass Equation

The distribution of matter in a star is described by a pair of con-
nected functions: ρ(r) is the local density at radial coordinate r, while
m(r) is the mass of the star contained within the sphere with radius
r. This latter quantity is often known as the interior mass, to distin-
guish it from the total stellar mass M ≡ m(R).

The density and interior mass are related by the mass equation

m(r′) =
∫ r′

0
4πr2ρ dr, (1)

which can also be written in the differential form

dm
dr

= 4πr2ρ. (2)

Because dm/ dr is always positive, m is a monotonic-increasing func-
tion of r. Therefore, there is a one-to-one mapping between interior
mass and radial coordinate, and we can use m itself as a coordinate
for specifying location within the star. For instance, m = 0.75 M
corresponds to any point on a sphere positioned so that 75% of the
star’s mass lies inside, and the remaining 25% outside.
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Figure 1: The density ρ (in units of
its central value ρc = 160 g cm−3)
and interior mass m (in units of its
surface value M = M� = 1.989× 1033

g), plotted as a function of radial
coordinate r for a MESA model of the
present-day Sun.

Fig. 1 illustrates the density and interior mass functions for a
model of the Sun. The matter at the center is around 160 times more
dense than water, yet it remains in a gaseous state due to its high
temperature. Moving from the center to the surface, the density
drops rapidly while the interior mass grows steadily.

Gravitational Field

Stars are held together by the gravitational field arising from their
mass. This field is described by the gravitational potential Φ, which
satisfies the spherical Poisson equation

1
r2

d
dr

(
r2 dΦ

dr

)
= 4πGρ. (3)

Here, G is the universal constant of gravitation2. Multiplying both 2 In cgs units, this has the value G =
6.674× 10−8 cm s−2 g−1.
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sides by r2 and integrating with respect to r, we obtain an expression
for the gravitational acceleration (also known just as the gravity),

g ≡ −dΦ
dr

= −Gm
r2 . (4)

Formally, this can be integrated again to obtain the gravitational
potential

Φ(r′) = −
∫ r′

0

Gm
r2 dr + C, (5)

where the constant C is usually chosen so that limr→∞ Φ = 0. In most
cases, however, it is not possible to evaluate this integral analytically.
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Figure 2: The gravity g (in units of its
surface magnitude GM/R2 = 2.69× 103

cm s−2) and gravitational potential
Φ (in units of its surface magnitude
GM/R = 1.89× 1015 cm2 s−2), plotted
as a function of radial coordinate r for
the MESA model of the present-day Sun
(cf. Fig. 1).

Fig. 2 illustrates the potential and gravity for the same solar model
shown in Fig. 1. The gravity is strongest around ' 0.25 R, and drops
to zero at the center of the star (where the potential is at its mini-
mum).

Gravitational Potential Energy

Imagine building a star layer-by-layer, by bringing each layer down
from infinity to its final position. When adding a new layer at coordi-
nates r and m, the gravitational potential is Φ = −Gm/r; therefore,
the potential energy of the layer is

dU ≡ Φ dm = −Gm
r

dm, (6)

where dm is the layer’s mass. Integrating over all layers, we obtain
the gravitational potential energy of the star

U ≡
∫

dU = −
∫ M

0

Gm
r

dm. (7)

As with the potential, in most cases it is not possible to evaluate
this integral analytically3. For simplicity, we will often express the 3 Although the integral looks rather

straightforward, don’t forget that r in
the integrand itself depends on m in
some complicated fashion

gravitational energy as

U = − fU
GM2

R
, (8)

where the ‘shape factor’ fU is a number of order unity. For the
solar model shown in Figs. 1 and 2, fU = 1.67 and the gravita-
tional potential energy is U = −6.12× 1048 erg. With a luminosity
L� = 3.83× 1033 erg s−1, the Sun could survive for 5.07× 107 yr by
converting its gravitational energy into light; this is a long time by
human standards, but very short compared to the age of the Sun.

Further Reading

Kippenhahn, Weigert & Weiss, §§1.1–1.3; Ostlie & Carroll, §§2.2,10.1;
Prialnik, §1.3.
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