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Circularization and Synchronization

Figure 1: Scatter plot of eccentricity e
versus orbital period P (in days) for
binary systems in the open cluster
M35. Note how systems with P . 10 d
are close to circular. From Meibom &
Mathieu (2005, ApJ, 620, 970).

Observations of binary systems in clusters1reveal a lack of eccentric

1 Remember that stars in clusters all
have the same age.

systems (e > 0) at short orbital periods (see Fig. 1). This is a conse-
quence of stellar tides, which gradually transfer energy and angular
momentum from the orbits to the individual stars. These tides, which
are strongest for close (and hence short-period) binaries, ultimately
leads both to the circularization of the orbits (e → 0), and to the syn-
chronization of the stars’ rotation (such that the rotation period of each
equals the orbital period P).

The Roche Model
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Figure 2: Contour plot of the effective
potential Φeff in the orbital plane, for a
circularized and synchronized binary
system with a mass ratio M2/M1 = 0.5.
The black crosses mark the centers of
each star (the more-massive star is on
the left), and the black dots indicate
the Lagrange points. The Roche lobe of
each star, shown by the dashed black
contour, intersects the L1 point.

To determine the shapes of stars in circularized and synchronized
binary system, we can use an approach developed originally by the
astronomer Édouard Roche. In this so-called Roche model, we approxi-
mate the stars’ gravitational potentials as arising from a pair of point
masses. In the frame of reference co-rotating with the stars, the accel-
eration of an at-rest test particle can then be written as a = −∇Φeff,
where

Φeff(r) = −
GM1

|r− r1|
− GM2

|r− r2|
− 1

2
|r×Ω|2 (1)

is the effective potential at position coordinate r. Here r1 and r2 are
the position coordinates of the primary and secondary stars, respec-
tively, while Ω is the angular velocity vector of the system2. On the

2 This vector points along the rotation
axis, and has magnitude |Ω| = 2π/P.

right-hand side of this expression, the first two terms represent the
gravitational potentials of the two stars, while the third term is a
centrifugal potential.

The surfaces of constant effective potential define the level (hori-
zontal) surfaces of the binary system, and surface of each star lies on
one of these equipotentials. As shown in Fig. 2, the equipotentials are
spherical close to the center of each star, but become distorted further
away. Each star has a special equipotential known as a Roche lobe,
which touches the L1 Lagrange point3 of the system.

3 This is the point on the line between
the two stars (but not necessarily at
the center of mass) where effective
potential shows a saddle point, and the
acceleration a vanishes. The L1 point
is marked in Fig. 2, together with the
four other Lagrange points where a
vanishes.

Roche Lobe Overflow

If a star expands to fill its Roche lobe, it will begin to spill mass onto
its companion through the L1 point. This Roche lobe overflow can have
a significant impact on the evolution of the stars and their orbits.
When the overflow occurs during the main-sequence phase of the
overflowing star, we refer to the mass transfer as case A; during the
RGB phase it is case B; and during the AGB it is case C.
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Conservative Mass Transfer

Let’s consider the special case of conservative mass transfer, meaning
that all of the mass and angular momentum lost by the donor star
is gained by the recipient star. With the further assumption that
the orbits remain circular, the rate-of-change of semi-major axis is
found4as 4 To derive this result, take the time

derivative of eqn. (10) of Handout xxxi,
with e = 0, Ṁ1 = −Ṁ2 and L̇ = 0.

ȧ
a
= −2

Ṁ2

M2

(
1− M2

M1

)
. (2)

The corresponding rate-of-change of the period is, from Kepler’s
third law,

2
Ṗ
P
= 3

ȧ
a

. (3)

Let’s assume5 that the primary star is the donor (Ṁ1 < 0) and the 5 Our analysis doesn’t rely on this
assumption, since the labels ‘primary’
and ‘secondary’ are arbitrary; but it’s
easier to interpret results if we fix the
signs of Ṁ1 and Ṁ2.

secondary star is the recipient (Ṁ2 = −Ṁ1 > 0). Then, the above ex-
pressions show that the orbits will shrink and the period get shorter,
if M2 < M1 — and vice versa. Put differently, mass transfer that
tends to make the two stars closer in mass will also make them phys-
ically closer.

As the separation of the stars changes, the size of their Roche lobes
will also change. The average radius6of the primary (donor) Roche 6 Defined in an equal-volume sense.

lobe can be well approximated by the formula

RL,1 ≈ 0.49a
(

M1

M1 + M2

)1/3
. (4)

Taking the time derivative, we find after some algebra that

ṘL,1

RL,1
= −2

Ṁ2

M2

(
1− 5

6
M2

M1

)
. (5)

With our assumption that Ṁ2 > 0, we can see that the primary Roche
lobe will shrink with time (ṘL,1 < 0) when M2/M1 < 6/5. The
shrinkage leads to a positive feedback loop: as RL,1 gets smaller, the
mass loss from the donor star grows7, driving up Ṁ2 and accelerat- 7 Compare what happens to a balloon

filled with water, as the balloon starts to
shrink.

ing ṘL,1.
Unless halted by M2/M1 rising above 6/5, this unstable mass trans-

fer ultimately deposits so much material on the recipient star that it,
too, overflows its Roche lobe. The binary system then consists of a
pair of stellar cores orbiting inside a common envelope. Friction be-
tween the stars and the envelope causes the stars to spiral in toward
each other. The release of energy by this inspiral eventually drives off
the envelope, leaving behind a very close binary system comprising
the stripped donor and its companion.

Further Reading

Ostlie & Carroll, §18.1.
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