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The Inclination Problem

Figure 1: An elliptical orbit, with the
center of mass at one focus marked by a
black dot. The projection of the orbit on
the sky plane is shown in faint, and the
blue arrow indicates the line-of-sight.
The angle between the orbit and sky
planes defines the inclination i.
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Figure 2: The apparent orbits of two
binary systems, both having mass ratio
M2/M1 = 0.5. (a) shows a circular
(e = 0) system seen face-on; (b) shows
an eccentric (e = 0.6) system seen
at an inclination i = 37°. In both
cases, the apparent orbit of each star is
circular; however, only in case (a) do
the apparent foci of the orbits (shown
by the black crosses) coincide with the
center-of-mass of the system (shown by
the black dot).

When we observe a binary system, we face the difficulty that we
typically don’t see the orbits face-on or edge-on, but rather from an
arbitrary and (initially) unknown orientation. Conventionally, we
characterize this orientation via the inclination i, defined as the angle
between the orbital plane and the plane of the sky (onto which the
orbit is projected; see Fig. 1); this is equivalent to the angle between
the line-of-sight and the normal to the orbital plane.

Observing Visual Binaries

For visual binaries, the effect of an inclination i > 0° is to change the
apparent shape of the orbits. Certain choices of i can make eccentric
orbits appear circular, and vice versa. Fortunately, we can spot cases
like this by finding the focus of the apparent orbit of each star (see
Fig. 2). We know that these foci should both coincide with the center-
of-mass of the system (see Handout xxxi). If they do, then we can be
confident that we’re seeing the system face-on (i = 0°).

We can determine the mass ratio of the stars in a visual binary by
measuring the angular size α of the semi-major axis1 for each star.

1 For circular systems, this corresponds
to the angular radius of the orbit.

Then, the ratio of semi-major axes is
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and from note 8 of Handout xxxi, it follows that the mass ratio is
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If the system happens to be face-on, and if we know its distance d,
then we can calculate a1 and a2 from α1 and α2 using the small-angle
formula

a1/1 au = (α1/1′′) (d/1 pc), a2/1 au = (α2/1′′) (d/1 pc). (3)

The semi-major axis of the one-body problem is then a = a1 + a2.
With a and the measured period P, we apply the generalized form
of Kepler’s third law (eqn. 13 of Handout xxxi) to find the combined
mass M1 + M2 of the system. Together with the mass ratio M2/M1,
we then have sufficient information to solve for the individual masses
of the stars.

Observing Spectroscopic Binaries

For spectroscopic binaries, we can use the Doppler shifts of spectral
lines to measure the radial velocity of each component — that is, the
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instantaneous orbital velocity projected along the line of sight. A
radial velocity curve is a plot of these measurements as a function of
time or orbital phase. The shape of the radial velocity curve provides
information about the eccentricity: a sinusoidal curve indicates a
circular orbit (e = 0; see Fig. 3), while non-sinusoidal curves are the
hallmarks of eccentric orbits (e > 0).

550 D. P. Kjurkchieva et al.: Spectroscopic observations of SV Cam

Table 1. Radial velocities of the Hα and FeI 6678 lines in kms−1.

Phase RV1(Hα) ∆RV1(Hα) RV2(Hα) ∆RV2(Hα) RV1(FeI) ∆RV1(FeI) RV2(FeI) ∆RV2(FeI)

0.105 −60.4 7.60 −69.6 24.78 121.3 11.70

0.130 −74.0 10.60 −73.0 19.13 134.0 15.20

0.153 −90.0 3.42 −96.6 23.04 164.0 28.00

0.177 −94.6 6.09 −105.6 20.86 191.0 28.00

0.200 −96.9 6.66 −114.5 20.86 195.0 25.80

0.225 −99.2 8.53 −116.8 26.95

0.250 −101.5 11.26 205.0 27.50 −119.0 28.69 218.0 50.40

0.270 −106.0 10.66 −123.5 23.04 195.4 21.06

0.295 −103.7 9.13 200.0 25.00 −105.6 19.13 183.0 18.66

0.320 −101.5 7.93 195.0 27.40 −105.6 30.43 173.0 33.60

0.590 81.4 10.93 62.9 26.52 −123.0 30.13

0.613 92.8 8.00 78.6 24.78 −132.5 26.66

0.637 104.2 6.06 96.5 11.73

0.660 111.1 5.80 110.0 22.60

0.668 118.0 4.93 −193.0 22.00 119.0 27.40

0.700 122.5 4.80 −199.7 17.80 128.0 28.20 −195.4 49.06

0.720 145.3 4.92 134.7 20.80

0.740 151.0 6.26 137.0 27.39 −213.9 49.06

0.766 145.3 6.27 −201.0 20.30 130.0 23.40 −213.0 41.86

0.790 140.3 6.26 −197.0 21.65 123.0 23.47 −204.0 45.33

0.814 137.0 5.93 −193.0 24.20 114.0 27.40 −198.0 30.93

0.840 105.0 29.13

0.860 96.5 21.30 −186.0 19.20

Fig. 1. An illustration of the fitting procedure.

to the only value known so far, published by Pojmanski
(211.5 km s−1) and obtained from the analysis of near IR
CaII spectral lines.

Assuming the photometrically determined value of i =
80◦ (Hilditch et al. 1979; Kjurkchieva et al. 2000a) and
using our values for K1 and K2 the resulting values of the

Fig. 2. Radial velocity curves of SV Cam.

mass ratio and masses of the components are q = 0.593 ±
0.011, M1 = 1.47 ± 0.06 M# and M2 = 0.87 ± 0.06 M#.

On the basis of our radial velocity solution and pho-
tometrically obtained fractional radii r1 = 0.35 and r2 =
0.24 (Paper I), we determined the absolute star’s radii
R1 = 1.38±0.05 R# and R2 = 0.94±0.06 R#. It should be
noted that the values of r1 and r2 determined by different
authors lie in the ranges 0.32–0.4 and 0.19–0.25 (Budding
& Zeilik 1987; Zeilik et al. 1988; Patkos & Hempelmann
1994; Djurasevic 1998; Heckert et al. 1998). The radii of
the components of SV Cam corresponding to their masses
calculated from the mass-radius relation for MS stars are
R1 = 1.32 R# and R2 = 0.91 R# for the primary and

Figure 3: Radial velocity curves for the
two components of SV Cam, a circular
spectroscopic and eclipsing binary with
M1 = 1.47 M� and M2 = 0.87 M�.
From Kjurkchieva et al. (2002, A&A,
386, 548.

2
1

4
3

F

t

1 2 3 4

a dcb

Figure 4: Schematic light curve for
an eclipsing binary comprising a hot,
smaller primary and a cool, larger
secondary. The inset figure shows the
relative positions of the two stars at
four orbital phases.

We can determine the mass ratio of the stars in a spectroscopic
binary from the semi-amplitude2 vr of the radial velocity curves:

2 I.e, half the peak-to-peak amplitude.

M2

M1
=

vr,1

vr,2
. (4)

If the system is circular, then the velocity semi-amplitudes are related
to the semi-major axes, inclination and period via

2πa1 =
vr,1

sin i
P, 2πa2 =

vr,2

sin i
P. (5)

Combining this with Kepler’s third law, we arrive at an expression
for the combined mass of the system:

M1 + M2 =
(vr,1 + vr,2)

3P
2πG sin3 i

. (6)

If we don’t know the inclination, this expression gives us only a
lower bound on the combined mass (since sin i ≤ 1). However, if the
system is also an eclipsing binary, the orbits must be close to edge-on
(i ≈ 90°); then, we can find the combined mass and solve for the
individual masses of the stars.

Observing Eclipsing Binaries

Eclipsing binaries are especially useful systems; not only do we know
their inclination, we can also place constraints on the size of each
star3. Fig. 4 demonstrates the light curve of a typical eclipsing binary, 3 In fact, we can also determine their

effective temperatures; but for brevity
we won’t go into that here.

plotting the flux F as a function of time t. If we measure the time
difference between point a (when the primary begins to be eclipsed)
and point b (when the primary completely disappears), and likewise
between point a and point c (when the primary begins to reappear),
then we can determine the radius of the two stars from

R1 = vt
tb − ta

2
, R2 = vt

tc − ta

2
. (7)

Here, vt is the transverse velocity of the stars relative to one another
(for a circular eclipsing binary, vt = vr,1 + vr,2).

Further Reading

Ostlie & Carroll, §§7.2,7.3
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