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The Two-Body Problem

Consider a pair of particles1with masses M1 and M2, moving subject 1 In our context, binary stars or a planet
orbiting the Sun.to their mutual gravitational attraction. Mathematically, this two-body

problem involves solving the coupled differential equations that arise
from applying Newton’s second law and law of gravitation:

M1 r̈1 =
GM1M2

r3 r, M2 r̈2 = −GM1M2

r3 r, (1)

where r ≡ r2 − r1 is the displacement from the first particle to the
second, r ≡ |r|, and we use the standard notation that a dot indicates
differentiation with respect to time.

The One-Body Problem

Combining the two equations above, we can reduce the two-body
problem to an equivalent one-body problem of a particle moving in a
central potential:

µr̈ = −GM1M2

r3 r, (2)

where
µ ≡ M1M2

M1 + M2
(3)

is the reduced mass of the system. It can be shown that solutions r(t)
to the equation of motion (2) lie in a plane. Therefore, we write the
equation in terms of polar coordinates2(r, θ) in this plane: 2 Consult any classical mechanics text

to understand the conversion of the
equation of motion to polar coordinates.

µ
(

r̈− rθ̇2
)
= −GM1M2

r2 (4)

µ
(
rθ̈ + 2ṙθ̇

)
= 0 (5)

The θ equation is trivially integrated once to obtain

µr2θ̇ = L (6)

where L is a constant that we can recognize as the angular momen-
tum of the system. The area swept out by the particle in time interval
∆t is r2θ̇∆t = (L/m)∆t, and therefore we see that Kepler’s second law
(Handout xxx) arises naturally from conservation of angular momen-
tum.

To solve the r equation, we transform3 from t to θ as the indepen- 3 By applying the chain rule

d
dt

=
dθ

dt
d
dθ

=
L

mr2
d
dθ

,

under the assumption that L is non-
zero.

dent variable, and to u = 1/r as the dependent variable. After some
algebra, we obtain

d2u
dθ2 + u =

GM1M2µ

L2 (7)

The solution to this second-order differential equation is

u =
GM1M2µ

L2 (1 + e cos θ) (8)
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where e is a constant of integration4. Hence, the solution to the radial 4 Because this is the solution to a
second-order equation, there should
be two constants of integration. How-
ever, we’ve implicitly chosen one to
ensure that u is maximal at θ = 0.

equation is found as

r(θ) =
a(1− e2)

1 + e cos θ
, (9)

where

a =
L2

GM1M2µ

1
1− e2 . (10)

For |e| < 1 the solution (9) describes an ellipse with semi-major axis
a, eccentricity e, and one focus situated at the origin5. 5 For |e| = 1, eqn. (9) describes a

parabola; and for |e| > 1 a hyperbola.
However, these are not bound solutions,
and so we won’t consider them further.

Suppose the origin of our coordinate system is at the center-of-
mass of the system. It follows6that the positions of each particle can

6 From setting the position coordinate
of the center-of-mass, rCOM ≡ M1r1 +
M2r2, to zero.

be calculated from r as7

7 The minus sign in the first equation
means that the two particles are always
on opposite sides of the center-of-mass.

r1 = − M2

M1 + M2
r, r2 =

M1

M1 + M2
r. (11)

When we apply these expressions to the Solar System, with the Sun
as particle 1 and a planet as particle 2, the fact that M1 � M2 leads to
the approximations:

r1 ≈ 0, r2 ≈ r. (12)

Hence, we find that the approximate orbit of the planet is an ellipse,
with the Sun stationary at one focus; this is Kepler’s first law. Of
course, a more-precise description is that the orbits of the Sun and a
planet are both ellipses8, with the center of mass at one focus. 8 The semi-major axes of these ellipses

are not the same:

a1 =
M2

M1 + M2
a, a2 =

M1

M1 + M2
a.

Note that a1 + a2 = a.

The Orbital Period

To determine the orbital period P of a two-body system, consider
the simple case of a circular 9binary (e = 0). The angular velocity of 9 It can be shown (although with more

effort) that the results derived here also
apply to eccentric binaries.

each particle is uniform, θ̇ = 2π/P. Combining this with eqns. (6)
and (10), we obtain after some algebra the result

P2 =
4π2

G(M1 + M2)
a3. (13)

Therefore, the period of the system depends only on combined mass
of the particles and the semi-major axis of the system — not on their
individual masses. When applied to planets in the Solar System,
M1 + M2 ≈ M�, and we find that(

P
1 yr

)2
=

( a
1 au

)3
,

which is Kepler’s third law.

Further Reading

Ostlie & Carroll, §2.3; Prialnik, §11.1.
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