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Colors of Stars

Figure 1: The globular cluster NGC
1866 — a densely packed, spherical
collection of hundreds of thousands of
stars. Credit: NASA/ESA/Hubble.

Stars span a range of colors (see Fig. 1). These colors are due not to
differences in composition1, but to differences in surface temperature.

1 Most stars have a composition similar
to the Sun: around 70% (by mass) hy-
drogen, 28% helium, and the remainder
a mixture of heavier elements.

Black-body Radiation

If we heat an opaque enclosure to a finite temperature, the interior
cavity will fill with electromagnetic radiation. Through a continual
process of absorption and re-emission by the walls of the enclosure,
this radiation will eventually approach an equilibrium state that
depends only on the temperature T of the walls. This state is known
as black-body radiation, and to a reasonable level of approximation,
stars can be modeled as emitters of black-body radiation.
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Figure 2: The flux density predicted
by Planck’s law (1), plotted against
wavelength λ for three choices of
the temperature T. The wavelength
is measured in Ångstroms, another
Astronomy-specific unit; 1 Å = 0.1
nm = 1× 10−8 cm.

If we open a small hole in the enclosure, allowing the black-body
radiation to gradually escape, then the energy flux in the (narrow)
wavelength interval [λ, λ + dλ] is given by Planck’s law,

Fλ dλ =
2πhc2

λ5
1

ehc/λkBT −1
dλ (1)

Here, kB is Boltzmann’s constant, h is Planck’s constant, and c is the
speed of light in a vacuum2 . The quantity Fλ is the flux density, with

2 In the cgs units preferred by As-
tronomers, these quantities have the
values kB = 1.380 649× 10−16 erg K−1,
h = 6.626 069× 10−27 erg s and
c = 2.997 925× 1010 cm s−1.

units of flux per unit wavelength interval. Fig. 2 plots the flux den-
sity for three different temperatures. With rising temperature, Fλ

increases at every wavelength; however, the increase is more pro-
nounced at smaller λ, causing the Fλ peak to shift to shorter wave-
lengths. The result, when perceived in the visible part of the electro-
magnetic spectrum, is that hotter black-body radiation appears bluer,
while cooler radiation appears redder.

Wien’s Law

This shift of the flux-density peak is described by Wien’s law, which
relates the wavelength λmax of the peak to the temperature via

λmax =
2.898× 107 Å K

T
(2)

This allows us to determine the temperature of a black-body emitter
simply by measuring λmax from its flux density.

The Stefan-Boltzmann Law

The Stefan-Boltzmann law is complementary to Wien’s law, describing
how the total flux

F ≡
∫ ∞

0
Fλ dλ (3)
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increases as the temperature rises. Substituting eqn. (1) into this
expression, it can be shown 3 that 3 If you want to try the derivation for

yourself, begin with the substitution
u = hc/λkBT.F = σT4, (4)

where the Stefan-Boltzmann constant is

σ ≡
2π5k4

B
15h3c2 = 5.6704× 10−5 erg cm−2 s−1 K−4 (5)

So, as with Wien’s law, we can in principle use the Stefan-Boltzmann
law to determine the temperature of a black-body emitter by mea-
suring its total flux F. However, a big caveat here is that we have
to measure F right at the surface of the emitter — we can’t use the
measured flux her on Earth, unless we correct for the effects of the
inverse-square law.

Application to Stars
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Figure 3: The measured flux density
of the Sun (shaded), plotted together
with the black-body curve at the Sun’s
effective temperature Teff ' 5772 K. Due
to the way the effective temperature is
defined, the area under the curves (i.e.,
the total flux F; cf. eqn. 3) is identical.

Real stars aren’t black-body emitters; their flux density doesn’t follow
Planck’s law (1) exactly. However, as Fig. 3 illustrates, they come
reasonably close. This motivates us to define the effective temperature
of a star to be the temperature of a hypothetical black-body emitter
that has the same surface flux of the star:

Teff ≡
4

√
F
σ

. (6)

The surface flux is itself determined by the star’s luminosity L and
radius R via

F =
L

4πR2 ; (7)

putting these expressions together, we arrive at the Stefan-Boltzmann
law as applied to stars,

L = 4πR2σT4
eff. (8)

This is one of the most important equations of stellar astrophysics,
and we will be making extensive use of it.

In the case of the Sun, the effective temperature is Teff ' 5772 K.
Fig. 3 shows that Wien’s law doesn’t hold exactly for the Sun — the
flux-density peak is slightly bluer than predicted. Nevertheless, the
discrepancy isn’t large, and so in situations where we lack reliable
measurements of L and/or R, we can estimate4 Teff by applying

4 A more-accurate approach to esti-
mating stellar effective temperatures
involves careful analysis of the absorp-
tion lines in their spectra, because the
strength of these lines changes with Teff.

Wien’s law.

Further Reading

Ostlie & Carroll, §3.4; Prialnik, §1.2.
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