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Overview

In this handout we’re going to build a simple model for fully convec-
tive stars — that is, stars where convection is occurring throughout
the entire interior, with only a thin radiative layer1at the surface.

1 The surface layers of a star — the
photosphere — must always be radia-
tive, because ∇rad ∝ P/T4 inevitably
becomes smaller than ∇ad in these
layers.Interior Solutions
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Figure 1: Interior solutions (solid lines)
and photosphere solutions (dotted
lines) for a fully convective star with
three different choices R1 < R2 < R3
of the stellar radius. The colored filled
circles mark the center of the star, and
the black filled circles (where interior
and photosphere solutions intersect)
mark the surface of the star.

We start by developing a formula for how the temperature T behaves
with respect to pressure P throughout the stellar interior. Assuming
that the convection is efficient, we have

∇T =
dln T
dln P

= ∇ad. (1)

Let’s also assume an ideal-gas equation of state applies, so that
∇ad = 2/5. Then, we integrate this equation to find

ln T − ln Tc =
2
5
(ln P− ln Pc) . (2)

To eliminate the central temperature Tc and pressure Pc, we use the
scaling relations2Pc ∼ M2/R4 and Tc ∼ M/R, yielding

2 The first relation comes from eqn. (8)
of Handout v, and the second follows
from the ideal-gas EOS.

ln T =
2
5

ln P +
1
5

ln M +
3
5

ln R + C, (3)

where C is a constant. Fig. 1 plots these interior solutions for a star
with fixed M and three different choices R1 < R2 < R3 of radius.

Photosphere Solutions

As already mentioned, stellar photospheres are always radiative,
and we must use a different ln T − ln P relation to describe them. To
develop this relation, we restate the outer boundary conditions from
Handout xiii:

T = Teff, P =
GM
R2κ

2
3

. (4)

Let’s now assume that the opacity depends on pressure and tempera-
ture via the generic relation

κ = κ0PaTb, (5)

where κ0, a and b are constants. Combining this with the pressure
boundary condition leads, after some algebra. to the desired relation:

ln T = −1 + a
b

ln P +
1
b

ln M− 2
b

ln R + C′ (6)

where C′ is another constant. Fig. 1 plots these photosphere solutions
for the same three radius choices as before.
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Matching Solutions

At the outer boundary of the star, the interior solution (3) must
match the photosphere solution (6). Setting these two equations
equal, we solve to find the photospheric pressure as

ln Pphot =
(10− 3b) ln R + (5− b) ln M− 5bC + 5bC′

5 + 5a + 2b
. (7)

The corresponding photospheric temperature, which by eqn. (4) is
also the effective temperature, is therefore

ln Tphot = ln Teff =
(3a− 1) ln R + (3 + a) ln M + 5(1 + a)C + 2bC′

5 + 5a + 2b
.

(8)
Fig. 1 also marks the matching points between interior and photo-
sphere solutions.

Fully Convective Star in the HR Diagram
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Figure 2: Evolutionary tracks in the
Hertzsprung-Russell diagram for
stars in the pre-main sequence phase,
calculated using MESA. Each track is
labeled at the zero-age main sequence
(ZAMS) with its initial mass in M�.
With increasing mass, the vertical
Hayashi tracks are displaced toward
hotter effective temperatures — exactly
as predicted by eqn. (9). Taken from
Fig. 1 of Handout viii).

For a fully convective star with a given mass, eqn. (8) indicates that
its effective temperature is a function only of its radius. This means
that the star must lie on a well-defined line in the Hertzsprung-
Russell diagram. To determine this line, we use the stellar Stefan-
Boltzmann equation (see eqn. 8 of Handout ii) to eliminate ln R in
favor of ln L and ln Teff; this yields

ln L =
(6 + 22a + 4b) ln Teff − (6 + 2a) ln M + C′′

3a− 1
, (9)

where C′′ is yet another constant. The slope of this line is

dlog L
dlog Teff

=
dln L

dln Teff
=

6 + 22a + 4b
3a− 1

. (10)

In cool stars (Teff . 104 K), H− opacity dominates throughout much
of the star, leading to an empirical scaling a ≈ 1 and b ≈ 3 and a
steep slope dlog L/ dlog Teff ≈ 20. So, fully convective stars lie on
almost vertical lines in the HR diagram.

We’ve already encountered these vertical lines for stars during
their pre-main sequence evolution: they are Hayashi tracks (see
Fig. 2). Initially, all PMS stars are fully convective; as they undergo
Kelvin-Helmholtz contraction they move vertically down in the HR
diagram. Eventually, for stars with M & 0.4 M�, a radiative region
develops in the interior; then, the star pulls off its Hayashi track and
evolves blueward along a Henyey track.

Further Reading

Kippenhahn, Weigert & Weiss, §24; Prialnik§9.1.
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