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Overview

We’re now reaching the end of the journey we began in Handout
iv: we have enough understanding of stellar physics to assemble a
closed1set of equations that — if we can solve them — will allow us 1 In the sense that there are as many

equations as unknowns, so we have
hope for finding a well-determined
solution.

to theoretically predict the structure and evolution of stars. In this
handout, we’re going to collect these equations in one place (albeit in
slightly different forms than when we introduced them), and discuss
the boundary conditions that accompany them.

First, let us define the variables that we’ll be using. The indepen-
dent variables are the interior mass2m and the time t. The dependent 2 We use m rather than r because the

stellar mass M generally remains un-
changed throughout a star’s evolution,
but the stellar radius R does not.

variables are the radial coordinate r, interior luminosity `, density
ρ and temperature T, plus a set of mass fractions {Xk} for the ele-
ments.

Structure Equations

The equations of stellar structure are the first-order partial3differential 3 Partial, because we’re explicitly
accounting for the fact that the stellar
structure depends on time as well as
space.

equations describing conservation of mass, momentum and energy,
plus an accompanying differential equation governing energy trans-
port; in order,
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1
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∇T . (4)

The last equation4 must be augmented with a formula for the dimen- 4 This equation may look unfamiliar,
but it is simply a different way of
expressing the definition of ∇T (see
eqn. 7 of Handout xii).

sionless temperature gradient ∇T . Under the simplifying assumption
that convection is everywhere efficient, we can write

∇T =

∇ad if ∇rad > ∇ad (convective)

∇rad if ∇rad < ∇ad (radiative)
, (5)

where ∇rad is defined in eqn. (8) of Handout xii, and ∇ad in eqn. (6)
of Handout xiii.

Evolution Equations

To establish how a star changes with time, we augment the four
structure equations (1–4) with a set of evolution equations that de-
scribe how the mass fractions {Xk} change with time. For element j,
the evolution equation5is

5 In convection zones, we must modify
this equation with additional terms
accounting for the rapid mixing that
occurs; often, however, it is simpler to
assume that convection zones remain
fully mixed, so that ∂Xj/∂m = 0 over
the extent of the zone for all j.
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∂Xj

∂t
=
AjmH

ρ ∑
k 6=j

(
rkj − rjk

)
, (6)

where rkj represents the rate (in particles per unit volume) at which
the element is created from another element k via nuclear reactions.

Constitutive Relations

The structure and evolution equations are accompanied by a set of
constitutive relations that specify how the properties of stellar material
depend on temperature, density and composition. These are the
equation of state giving P; the internal energy equation giving u; the
opacity equation giving κ; the nuclear reaction equations giving rkj

and εnuc; and the neutrino loss equation giving εν.

Boundary Conditions

To complete our specification of the overall problem, we augment the
four structure equations (1–4) with four boundary conditions. The
boundary conditions at the center are

`→ 0

r → 0

}
as m→ 0, (7)

For the surface boundary conditions, we use a formula6 giving the 6 This formula comes from the theory
of stellar atmospheres, adopting the
Eddington-gray approximation. Teff is
the usual effective temperature defined
by the luminosity L and radius R at the
outer boundary (see eqn. 8 of Handout
ii).

temperature in the photosphere as a function of optical depth as

T4(τ) =
3
4

T4
eff

(
τ +

2
3

)
. (8)

To find the pressure, we integrate the equation of hydrostatic equi-
librium down from the top of the photosphere. If we assume that the
opacity and gravity remain constant throughout the photosphere,
then

P(τ) =
GM
R2κ

τ. (9)

Usually, we define the nominal outer boundary to be where T = Teff;
from the temperature equation, we see this corresponds to τ = 2/3.
Therefore, evaluating the pressure at this optical depth, we find the
outer boundary conditions as

P→ GM
R2κ

2
3

T → Teff

 as m→ M. (10)

Further Reading

Kippenhahn, Weigert & Weiss, §10.1; Ostlie & Carroll, §10.5.
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