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An Algorithm for Convection

At any point within a star, suppose we know the opacity κ, the in-
terior luminosity ` and the thermodynamic state (T, P and ρ) of the
material. How then do we calculate the temperature gradient ∇T?
Putting together our knowledge from previous handouts, we can
devise a suitable algorithm. First, evaluate ∇rad from κ, ` and the
state (see eqn. 8 of Handout xii), and ∇ad from the state (see eqn. 6 of
Handout xiii). Then, compare these two quantities1and set up ∇T as 1 Note that we’re comparing ∇rad

against ∇ad; contrast with the
Schwarzschild criterion (eqn. 8 of
Handout xiii), which relates ∇T and
∇ad.

follows:

∇T =

∇rad if ∇rad < ∇ad,

ϕconv∇ad + (1− ϕconv)∇rad if ∇rad > ∇ad.
(1)

Here, ϕconv as a convective efficiency parameter, which we’ll discuss
below.

The upper choice in eqn. (1) satisfies the Schwarzschild criterion
∇T < ∇ad, indicating that no convection occurs. Then, radiation
transports all of the interior luminosity: `rad = ` and `conv = 0.
By contrast, the lower choice violates the Schwarzschild criterion,
indicating that convection must be present. Then, the interior lumi-
nosities transported by radiation and convection are

`rad
`

=
ϕconv∇rad + (1− ϕconv)∇ad

∇rad
,

`conv

`
= ϕconv

∇rad −∇ad
∇rad

.
(2)
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Figure 1: The dimensionless (∇T),
radiative (∇rad) and adiabatic (∇ad)
temperature gradients, plotted as a
function of temperature T for a MESA
model of the present-day Sun. The solar
convection zone corresponds to the
region where ∇rad > ∇ad.

The efficiency parameter ϕconv is bounded2to lie in the interval [0, 1].

2 This is because ∇ad < ∇T < ∇rad in
convection zones; ∇T must exceed ∇ad
in order for the convection to occur; but
cannot exceed ∇rad because, otherwise,
`rad would be larger than `.

It depends in a complicated fashion on κ, ` and other local quantities;
to evaluate it, we need to apply so-called mixing-length theory (MLT).
We won’t go into MLT in detail here, but let’s consider a couple of
limiting cases. In the ‘efficient’ limit ϕconv → 1, convection trans-
ports as much energy as it is able, and the radiative and convective
luminosities are

`rad
`
→ ∇ad
∇rad

,
`conv

`
→ ∇rad −∇ad

∇rad
. (3)

In the opposite ‘inefficient’ limit ϕconv → 0, convection transports
essentially no energy, and the luminosities are

`rad → `, `conv → 0. (4)

In stars, it’s typically the case that convection is only inefficient
(ϕconv → 0) when it occurs very near the stellar surface; otherwise,
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it’s efficient. Fig. 1 demonstrates this by plotting the three gradients
(∇T , ∇rad and ∇ad) for a model of the Sun. Throughout most of the
zone where ∇rad > ∇ad, the high efficiency of convection (ϕconv ≈ 1)
means that ∇T ≈ ∇ad.
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Figure 2: As with Fig. 1, except that
a 5 M� star with a core hydrogen
abundance Xc ≈ 0.38 is shown (this
abundance is chosen to match that of
the solar model shown in Fig. 1).

Intermediate-mass (0.4 M� . M . 1.4 M�) stars on the main se-
quence share the same general structural layout as the Sun (see
Fig. 1), comprising a radiative core and a convective envelope. For
higher-mass stars (M & 1.4 M�) on the main sequence the config-
uration is opposite, comprising a convective core and a radiative
envelope (cf. Fig. 2). Whereas, low-mass stars (M . 0.4 M�) are
convective throughout their entire interior.
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Figure 3: The interior mass-to-
luminosity `/m (in units of L�/M�)
and the opacity, plotted as a function
of temperature for MESA models with
masses 5, M�, 1 M� and 0.2 M� (the
first two are the same models shown
in Figs. 1 and 2; the third has the same
core hydrogen abundance Xc ≈ 0.38 as
the first two).

To understand these different outcomes, let’s examine what can
cause ∇rad to rise above the typical threshold ∇ad ≈ 2/5 for the
onset of convection. From Handout xii, the radiative temperature
gradient is

∇rad =
3

16πacG
κ`P
mT4 .

The two important terms on the right-hand side are the opacity κ and
the interior luminosity-to-mass ratio `/m; if either of these are large,
then so too is ∇rad and convection must occur.

Fig. 3 plots these terms for the solar model, the 5 M� model, and
for a 0.2 M� main-sequence model. Breaking down the data for each
mass,

• the solar model shows a large opacity in the envelope (due mainly
to bound-free and free-free absorption), explaining why convection
occurs there;

• the low-mass model shows a large opacity in the envelope and the
core (again due to bound-free and free-free absorption), explaining
why the entire star is convective;

• the high-mass model shows a relatively small opacity everywhere,
compared to the other models, due to its lower density. However,
the model has a large luminosity-to-mass ratio in the core, explain-
ing why convection occurs there.

Further Reading

Kippenhahn, Weigert & Weiss, §§7,22.3; Ostlie & Carroll, §10.4; Prialnik,
§9.2.
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