X1v — CONVECTION IN STARS

An Algorithm for Convection

At any point within a star, suppose we know the opacity «, the in-
terior luminosity ¢ and the thermodynamic state (T, P and p) of the
material. How then do we calculate the temperature gradient V7?
Putting together our knowledge from previous handouts, we can
devise a suitable algorithm. First, evaluate V.4 from «, £ and the
state (see eqn. 8 of Handout x11), and V4 from the state (see eqn. 6 of
Handout x111). Then, compare these two quantities’and set up Vr as
follows:

Viad if Viag < Vag,

Vr = ) (1)
(Pconvvad + (1 - roonv)vrad if Viad > Vag.

Here, ¢conv as a convective efficiency parameter, which we’ll discuss
below.

The upper choice in eqn. (1) satisfies the Schwarzschild criterion
V1 < V.4, indicating that no convection occurs. Then, radiation
transports all of the interior luminosity: ¢,,q = ¢ and {cony = 0.
By contrast, the lower choice violates the Schwarzschild criterion,
indicating that convection must be present. Then, the interior lumi-
nosities transported by radiation and convection are

erad _ q)convvrad —+ (1 — qoconv)vad
4 vracl ’
Leony . vracl - vaCl
7 Pconv 7vrad .

)

Convective Efficiency

The efficiency parameter ¢cony is bounded?to lie in the interval [0, 1].
It depends in a complicated fashion on x, £ and other local quantities;
to evaluate it, we need to apply so-called mixing-length theory (MLT).
We won't go into MLT in detail here, but let’s consider a couple of
limiting cases. In the ‘efficient’ limit @cony — 1, convection trans-
ports as much energy as it is able, and the radiative and convective
luminosities are

Erad vad gconv vrad — vad
¢ Vod ¢ Ved G)
rad rad
In the opposite ‘inefficient’ limit @cony — 0, convection transports
essentially no energy, and the luminosities are
leag — ¢, Leonv — 0. (4)

In stars, it’s typically the case that convection is only inefficient
(¢conv — 0) when it occurs very near the stellar surface; otherwise,
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* Note that we're comparing V.4
against V,q; contrast with the
Schwarzschild criterion (eqn. 8 of
Handout x111), which relates V1 and
Vad-
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Figure 1: The dimensionless (V),
radiative (V,q) and adiabatic (V,q)
temperature gradients, plotted as a
function of temperature T for a MESA
model of the present-day Sun. The solar
convection zone corresponds to the
region where V.4 > V4.

2 This is because Voq < V1 < Vi ,q in
convection zones; V1 must exceed V4
in order for the convection to occur; but
cannot exceed V.4 because, otherwise,
l12q would be larger than /.
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it’s efficient. Fig. 1 demonstrates this by plotting the three gradients
(V1, Viaq and V,q) for a model of the Sun. Throughout most of the
zone where V,,q > V,4, the high efficiency of convection (@conv ~ 1)
means that V1 =~ V4.

Convection on the Main Sequence

Intermediate-mass (04 My < M < 1.4 M) stars on the main se-
quence share the same general structural layout as the Sun (see
Fig. 1), comprising a radiative core and a convective envelope. For
higher-mass stars (M 2 1.4 M) on the main sequence the config-
uration is opposite, comprising a convective core and a radiative
envelope (cf. Fig. 2). Whereas, low-mass stars (M < 0.4 M) are
convective throughout their entire interior.

To understand these different outcomes, let’s examine what can
cause V.4 to rise above the typical threshold V,q4 ~ 2/5 for the
onset of convection. From Handout x11, the radiative temperature

gradient is
3 «lP

167tacG mT*’
The two important terms on the right-hand side are the opacity « and

vracl =

the interior luminosity-to-mass ratio ¢/m; if either of these are large,
then so too is V,,q and convection must occur.

Fig. 3 plots these terms for the solar model, the 5 M model, and
for a 0.2 M main-sequence model. Breaking down the data for each
mass,

¢ the solar model shows a large opacity in the envelope (due mainly
to bound-free and free-free absorption), explaining why convection
occurs there;

¢ the low-mass model shows a large opacity in the envelope and the
core (again due to bound-free and free-free absorption), explaining
why the entire star is convective;

¢ the high-mass model shows a relatively small opacity everywhere,
compared to the other models, due to its lower density. However,
the model has a large luminosity-to-mass ratio in the core, explain-
ing why convection occurs there.

Further Reading

Kippenhahn, Weigert & Weiss, §§7,22.3; Ostlie & Carroll, §10.4; Prialnik,
§9.2.
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Figure 2: As with Fig. 1, except that
a 5 Mg, star with a core hydrogen
abundance X. ~ 0.38 is shown (this
abundance is chosen to match that of
the solar model shown in Fig. 1).
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Figure 3: The interior mass-to-
luminosity ¢/m (in units of Lo,/ Me)
and the opacity, plotted as a function
of temperature for MESA models with
masses 5, M, 1 Mg and 0.2 Mg, (the
first two are the same models shown
in Figs. 1 and 2; the third has the same
core hydrogen abundance X. =~ 0.38 as
the first two).

Rich Townsend



	An Algorithm for Convection
	Convective Efficiency
	Convection on the Main Sequence
	Further Reading

