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Stability of Hydrostatic Equilibrium

Consider a small blob of material with volume ∆V, at rest within a
star in hydrostatic equilibrium. Suppose we displace this blob in the
radial direction. The blob must expand or contract to remain in pres-
sure equilibrium with its surroundings, and as a result its density
will change. Let’s denote this change as δρb, and the corresponding
change in the density of the blob’s surroundings (caused by the blob
being at a different position in the star) as δρs

1. Generally, ρb 6= ρs, 1 Here, we use the subscript ‘b’ to refer
to the blob, and the subscript ‘s’ to refer
to the blob’s surroundings.

and so there will be a net buoyant force on the blob given2by

2 This equation comes from applying
Archimedes principle:Any object, totally
or partially immersed in a fluid, is buoyed
up by a force equal to the weight of the fluid
displaced by the object.

fb = (δρs − δρb)g ∆V. (1)

Depending on the sign of fb, this force will either pull the blob back
to its original position, or push it further away. These two outcomes
correspond, respectively, to the hydrostatic equilibrium being stable or
unstable.

In the unstable case, any tiny departures from perfect hydrostatic
balance in the star will be amplified over time. However, the final
outcome of this instability isn’t complete disruption of the star, but
a steady-state system of circulatory currents, with low-density up-
wellings balanced by high-density downwellings; these currents are
what we have been calling convection. When averaged over many cir-
culation timescales3, hydrostatic balance (eqn. 6 of Handout v) still 3 These timescales can vary from min-

utes to centuries, but are typically
much shorter than stellar evolutionary
timescales.

applies.

The Schwarzschild Criterion

To establish the circumstances leading to convection, let’s figure out
how we can evaluate the δρ terms appearing in eqn. (1). Regarding
the density as a function of pressure and temperature, we can write

δρ =

(
∂ρ

∂T

)
P

δT +

(
∂ρ

∂P

)
T

δP. (2)

(we’ve dropped subscripts for the moment, because this expression
applies separately to both blob and surroundings). Using the ideal-
gas equation of state (eqn. 4 of Handout vi) to evaluate the partial
derivatives4, this becomes 4 Although our derivation here assumes

an idea gas EOS, the resulting stability
criterion (eqn. 8) is in fact generally
applicable to any EOS.δρ = ρ

(
− δT

T
+

δP
P

)
. (3)

For the surroundings, the temperature change δTs can be ex-
pressed in terms of the pressure change ∆Ps via

δTs

T
=

(
dln T
dln P

)
δPs

P
= ∇T

δPs

P
, (4)
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where the second equality invokes the dimensionless temperature
gradient defined in eqn. (7) of Handout xii.
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Figure 1: The dimensionless tem-
perature gradient ∇T and adiabatic
temperature gradient ∇rad, plotted as
a function of radial coordinate r for a
MESA model of the present-day Sun.
The shading shows the convective re-
gion where the Schwarzschild stability
criterion ∇T < ∇ad is violated.

For the blob, we have to consider how its state adjusts as it ex-
pands or contracts. Because the flow of energy is such a slow process
in the stellar interior, it’s reasonable to assume that this adjustment is
adiabatic. Therefore, we write

δTb
T

=

(
∂ln T
∂ln P

)
ad

δPb
P

= ∇ad
δPb
P

. (5)

The second equality introduces the adiabatic temperature gradient

∇ad ≡
(

∂ln T
∂ln P

)
ad

, (6)

where the subscript ‘ad’ indicates an adiabatic change. An important
distinction between ∇T and ∇ad is that the former depends on the
temperature stratification T(P) within the star; whereas the latter
depends only on the equation of state5. This distinction is manifest

5 For the specific case of an ideal gas
EOS, ∇ad = (γ− 1)/γ, where γ is the
usual ratio of specific heats.

in the different types of derivatives appearing in these gradients’
definitions: ordinary for ∇T , partial for ∇ad.

Let’s now put everything together. Using eqns. (3–5) to evaluate
the density changes in the blob and surroundings, the buoyant force
becomes

fb = (∇ad −∇T)
δPb
P

ρ g ∆V, (7)

where we’ve used the fact that δPb = δPs because the blob remains in
pressure equilibrium with its surroundings. For stability, the term in
parentheses must be positive6, leading to the criterion 6 To see this, consider an upward

displacement of the blob. Because
pressure decreases outward in a star in
hydrostatic equilibrium, ∆Ps < 0. In
order for the force to pull the blob back
down, fb < 0; therefore, the term in
parentheses must be positive.

∇T < ∇ad. (8)

This is known as the Schwarzschild 7criterion for convective stability.

7 After Martin Schwarzschild, one of the
pioneers of modern stellar astrophysics.
Martin’s father, Karl, gave his name to
the the radius of the event horizon of
black holes.

At any point in this star, if this inequality holds then the material is
stable against small displacements and there will be no convection.
Conversely, if this inequality is violated then the material is unstable
and convection will spontaneously commence.

Fig. 1 plots ∇T and ∇ad for a model of the Sun. In the inner part
of the star (r . 0.7 R) the Schwarzschild criterion (8) is satisfied and
there is no convection. Conversely, in the outer part (0.7 R . r < R)
the criterion is violated and so convection occurs. Note that ∇ad ≈
2/5 throughout most of the star, confirming that the material is well
approximated as an ideal gas with γ = 5/3.

Further Reading

Kippenhahn, Weigert & Weiss, §6.1; Ostlie & Carroll, §10.4; Prialnik, §6.5.
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