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Opacity Sources
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Figure 1: Pictorial representation of
the four opacity sources in stars: (a)
bound-bound absorption, (b) bound-
free absorption, (c) free-free absorption,
(d) electron scattering. The blue circle
indicates the atomic nucleus, the green
circle an electron.

The opacity κ of stellar material arises from a number of distinct
physical processes, known collectively as opacity sources:

(a) bound-bound absorption, where a photon is absorbed by a bound
electron, excited the electron to a higher (but still bound) energy
level.

(b) bound-free absorption, where a photon is absorbed by a bound elec-
tron, freeing the electron from the atom. This is the same process
as ionization.

(c) free-free absorption, where a photon is absorbed by a free electron
in the vicinity of an atom, raising the electron to a higher (and still
free) energy state. This is the inverse process of bremsstrahlung.

(d) electron scattering, where a photon is scattered by a free electron.

Fig. 1 sketches these processes. Because free-free absorption and
electron scattering require the presence of free electrons, they are
absent in completely neutral material. Conversely, because bound-
bound and bound-free absorption require the presence of bound
electrons, they are absent in fully ionized material.

The dependence of opacity on temperature and density is gener-
ally quite complex. However, in stellar interiors there are three main
regimes where only a single or couple of opacity sources make a sig-
nificant contribution toward κ. At high temperatures (T & 106 K)
electron scattering is dominant, and the opacity is insensitive to T or
ρ. At intermediate temperatures (104 K . T . 104 K) bound-free and
free-free absorption are dominant, and the opacity follows Kramers’
law,

κKramers ∼ ρT−7/2. (1)

Finally, at low temperatures (T . 104 K) so-called H-minus opacity
becomes dominant. This is bound-free absorption by H− ions —
hydrogen atoms with a second, loosely-bound electron. The opacity
then behaves as

κH− ∼ ρ1/2T15/2. (2)

Fig. 2 demonstrates these three regimes for a model of the Sun.

Radiative Diffusion

In stellar interiors, the mean free path of photons is much shorter
than the characteristic length scales over which the temperature
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changes. This allows us to treat the transport of heat by radiation
as diffusive process, with a radiative flux Frad given by

Frad = −krad
durad

dr
. (3)
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Figure 2: The opacity κ plotted as
a function of temperature T, for a
fixed density ρ = 10−6 g cm−3. The
data are taken from MESA for solar
composition. The lines shows the three
regimes discussed in the text: κ ∼ const.
(electron scattering), κ ∼ T−7/2 (bound-
free and free-free absorption) and
κ ∼ T15/2 (bound-free absorption due to
H-minus).

Here, the radiation energy density is

urad = aT4, (4)

with a ≡ 4σ/c being the radiation constant, and the radiative diffusivity
is

krad =
c〈l〉

3
=

c
3κρ

. (5)

The radiative flux is in turn related to the radiative interior luminos-
ity (see Handout x) via `rad ≡ 4πr2Frad; putting these expressions
together, we arrive at an expression for the radiative luminosity:

`rad = −16πr2acT3

3κρ

dT
dr

. (6)

Temperature Gradients
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Figure 3: The dimensionless tem-
perature gradient ∇T and radiative
temperature gradient ∇rad, plotted as
a function of radial coordinate r for a
MESA model of the present-day Sun.
Energy transport is by radiation alone
in regions where ∇rad = ∇T ; and by
radiation and convection together in
regions where ∇rad > ∇T .

Expressed in the form (6), the radiative diffusion equation allows
us to calculate `rad given dT/ dr and other quantities. However, we
often need to solve the converse problem: what temperature gradient
is required to transport a given radiative luminosity? In such cases,
we rewrite the diffusion equation as

∇T ≡
dln T
dln P

=
3

16πacG
κ`radP
mT4 , (7)

where the first equality serves to define the dimensionless tempera-
ture gradient ∇T , and the second equality follows from applying the
equation of hydrostatic equilibrium (eqn. 6 of Handout v).

A related quantity of interest is the radiative temperature gradient
∇rad, which quantifies the hypothetical temperature gradient that
could transport all of the interior luminosity by radiation alone:

∇rad =
3

16πacG
κ`P
mT4 (8)

When ∇rad = ∇T , all the interior luminosity is transported by radi-
ation (by definition); whereas when ∇rad > ∇T , a fraction ∇T/∇rad

is transported by radiation, and the remainder by convection. Fig. 3

plots the two temperature gradients for a model of the Sun.

Further Reading

Kippenhahn, Weigert & Weiss, §§5.1,5.2; Ostlie & Carroll, §10.4; Prialnik,
§3.7.
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