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Interior Luminosity
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Figure 1: The interior luminos-
ity ` (in units of its surface value
L = 3.86× 1033 erg s−1), plotted as
a function of radial coordinate for a
MESA model of the present-day Sun.
Also show are the contributions to-
ward ` from the radiative (`rad) and
convective (`conv) interior luminosities.

In Handout iv we introduced m(r) as the mass of a star contained
within the sphere with radius r. We now define the interior luminos-
ity `(r) as the total energy flowing through the surface of the same
sphere, per unit time interval. By definition, L ≡ `(R).

Fig. 1 illustrates the interior luminosity for a model of the present-
day Sun. Also plotted are the radiative (`rad) and convective (`conv)
interior luminosities, representing the energy transported by radia-
tion and convection, respectively; by definition,

` ≡ `rad + `conv. (1)

In the figure, we see that ` rises rapidly from zero at the center of the
star, and by r ≈ 0.4 R is already very close to its surface value. In
the inner parts of the star (r . 0.7 R), and also in a thin layer at the
stellar surface (the photosphere) there is no convection: `conv = 0 and
so `rad = `. Elsewhere, both radiation and convection contribute by
varying amounts toward `.

Thermal Equilibrium

The interior luminosity is closely linked to the generation and trans-
port of energy within the star. To establish this link, consider a spher-
ical shell extending from radial coordinate ra out to radial coordinate
rb. The rate dQ̇ that energy is added or removed from this shell is as

dQ̇ =

[
`(ra)− `(rb)

]
︸ ︷︷ ︸

luminosity

+
∫ rb

ra
4πr2ρεnuc dr︸ ︷︷ ︸

nuclear reactions

−
∫ rb

ra
4πr2ρεν dr︸ ︷︷ ︸

non-nuclear neutrinos

(2)

The terms on the right-hand side represent three separate processes
(from left-to-right):

(I) Energy entering the shell through its lower boundary, and leaving
through its upper boundary, via the interior luminosity;

(II) Energy deposited throughout the shell via nuclear reactions. The
term εnuc represents the net1 energy release due to nuclear reac- 1 That is, the total energy release minus

the energy of any neutrinos generated,
since the latter escape from the star
with no further interactions.

tions, per unit time interval and mass.

(III) Energy removed throughout the shell via non-nuclear neutrino
production2. The term εν represents the energy lost as non-nuclear 2 An example here is photo-neutrino

reactions: e− + γ→ e− + νe + ν̄e.neutrinos, per unit time interval and mass.

Applying the fundamental theorem of calculus, the equation can also
be expressed as

dQ̇ =
∫ rb

ra

[
−d`

dr
+ 4πr2ρ(εnuc − εν)

]
dr (3)
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For stars on the main sequence, dQ̇ vanishes for all possible
choices of ra and rb. This condition is known as thermal equilibrium; it
arises due to precise balance between the transport, generation and
loss of energy. Setting the integrand to zero in the eqn. (3), we find
the condition for thermal equilibrium:

d`
dr

= 4πr2ρ(εnuc − εν). (4)

Fig. 2 demonstrates thermal equilibrium in action for a model of the
Sun.
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Figure 2: The interior luminosity ` (in
units of L), its gradient d`/ dr and
the nuclear energy release rate per
unit radius 4πr2ρεnuc (both in units of
L/R), plotted as a function of radial
coordinate r for the MESA model
of the present-day Sun (cf. Fig. 2).
With εν being negligible, the close
match between d`/ dr and 4πr2ρεnuc
indicates that the model is in thermal
equilibrium.
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Figure 3: As in Fig. 2, but for a MESA
model of the Sun in the pre-main
sequence phase, when L = 280 L�.
Because there is no energy generation
in the star, d`/ dr does not match
4πr2ρεnuc, and so the star isn’t in
thermal equilibrium.

Departures from Thermal Equilibrium

In certain phases of stellar evolution, thermal equilibrium does not
hold. Then, eqn. (4) must be replaced by the energy conservation
equation

du
dt

=
1

4πr2ρ

[
d`
dr

+ 4πr2ρ(εnuc − εν)

]
+

P
ρ2

dρ

dt
. (5)

This is a form of the first law of thermodynamics (FLOT), which relates
the change in internal energy of a thermodynamic system to the heat
added to the system (the first term on the right hand side, which
involves the integrand from eqn .3), and the work done on the system
(the second term).

Fig. 3 gives an example of a star that’s not in thermal equilibrium.
As with all stars on the PMS, the nuclear energy generation in this
star is negligible (as are the neutrino losses), and so there’s no way
it can satisfy eqn. (4). As we already know, the star will undergo
Kelvin-Helmholtz contraction and heat up.

The Thermal Timescale

In Handout 5, we introduced the dynamical timescale τdyn as the
characteristic timescale over which a star re-establishes hydrostatic
equilibrium. A corresponding quantity, the thermal timescale τthm,
measures how long it takes for a star to establish thermal equilib-
rium. We already have encountered this timescale — it’s the Kelvin-
Helmholtz timescale:

τthm ≡ τKH ≡
GM2

RL
(6)

(see eqn. 4 of Handout viii).

Further Reading

Kippenhahn, Weigert & Weiss, §4.4; Ostlie & Carroll, §10.3; Prialnik, §2.1.
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