
Homework Assignment 13 — Solutions

• Q11.1 To confirm that the changes in the effective temperature of the Sun are consistent with its
variations in radius and luminoisity, as graphed in Fig. 11.1 of Ostlie & Carroll, we can check that the
equation

L = 4πR2σT 4
eff

is satisfied. Let’s do this at the start of the graph, the end, and in the middle (at the present age):

Age (109 yr) L(L�) R(R�) Teff(K) 4πR2σT 4
eff(L�)

0.00 0.68 0.87 5620 0.68
4.55 1.00 1.00 5777 1.00
8.00 1.36 1.16 5781 1.35

The close agreement between the second and fifth columns confirms that the changes in effective
temperature, luminosity and radius are indeed self-consistent.

• Q11.2

(a). The mass-loss rate due to nuclear reactions can be determined from the mass equivalent of the
solar luminosity:

Ṁ =
L�

c2
= 4.27× 109 kg s−1 = 6.78× 10−14 M� yr−1

(b). The mass-loss rate due to the solar wind is approximately 3 × 10−14 M� yr−1 (Ostlie & Carroll,
p. 374). This is about half of the mass-loss rate due to nuclear reactions.

(c). Assuming both mass-loss rates remain constant, the total mass-loss rate of the Sun will be ∼
10−13 M� yr. Over the Sun’s main-sequence lifetime of 1010 yr, this will give a total mass loss of
10−3M� — not a significant amount.

• Q11.9 The optical depth τλ is related to distance s via the standard equation

τλ =

∫ s

0

κλρds.

For uniform opacity and density, this simplifies to

τλ = κλρs.

At wavelength λ1, the opacity is κλ1 = 0.026 m2 kg−1. Assuming a gas density 2.2 × 10−4 kg m−3,
the point with optical depth τλ = 2/3 will be at distance s1 = 117 km into the gas. Likewise, at
wavelength λ2, where the opacity is κλ2

= 0.030 m2 kg−1, the point with optical depth τλ = 2/3 will
be at a distance s2 = 101 km into the gas.

Given that at any wavelength we typically see down to an optical depth τλ = 2/3, these values
demonstrate that we can see further into the gas, by 16 km, at wavelength λ1 than at wavelength λ2.

• Q12.12 Hydrostatic equilibrium requires that the inward pull of gravity is balanced by the gradient of
the gas pressure,

dP

dr
= −ρg.

If the gas pressure is constant, P = P0, then the pressure gradient vanishes on the left-hand side of
this equation, and the requirement of hydrostatic equilibrium cannot be satisfied.

This result indicates that the assumption of constant mass density in an isothermal (constant temper-
ature), constant composition cloud is inconsistent; for, if all of these quantities were constant, then the
pressure given by the ideal-gas equation of state,

P =
ρkT

µmH
,

would be constant also — and hydrostatic equilibrium could not be satisfied.
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• Q12.13

(a). The pressure gradient in the cloud can be approximated using a two-point finite difference,∣∣∣∣dPdr
∣∣∣∣ ≈ ∣∣∣∣Ps − Pc

R

∣∣∣∣ ≈ Pc
RJ

,

where the second equality follows from the assumption that the surface pressure Ps is zero. To
estimate the central pressure Pc, we can use the ideal gas law

Pc ≈
ρkT

µmH
,

with ρ and T being the initial cloud density and temperature, respectively. Adopting the values
ρ = 3 × 10−17 kg m−3 and T = 10 K for the dense molecular cloud described in Example 12.2.1
of Ostlie & Carroll, together with a molecular weight µ = 2, the central pressure is found as
Pc ≈ 1.2× 10−12 N m−2.

Example 12.2.1 gives the Jeans mass of a typical dense molecular cloud as MJ ≈ 8M�. For the
given density, this translates via eqn. (12.13) to a Jeans radius RJ ≈ 5× 1015 m ≈ 7.2× 106R�.
Thus, the pressure gradient is estimated as |dP/dr| ≈ Pc/RJ ≈ 2.4 × 10−28 N m−2 m−1 — not
much at all!

(b). We can estimate the strength of the gravity term GMrρ/r
2 as

GMrρ

r2
≈ GM

R2

3M

4πR3
≈ 3GM2

4πR5
.

Substituting in the above values for the Jeans mass and radius, this term is found to have a value
1.3 × 10−27 N m−2 m−1. Comparing this against the pressure gradient found in (a), the latter
is around a factor 5 smaller, indicating that pressure forces are relatively unimportant in the
dynamics of cloud’s collapse; the collapse is essentially free-fall.

(c). The ratio of pressure gradient to gravitational force scales as

dP

dr

[
GMrρ

r2

]−1

≈ ρkT

µmHR

4πR5

3GM2

Eliminating the density term on the right-hand side, this becomes

dP

dr

[
GMrρ

r2

]−1

≈ 3MkT

4πµmHR4

4πR5

3GM2
,

which simplifies to

dP

dr

[
GMrρ

r2

]−1

≈ kT

µmHG

R

M

As the core collapses, R decreases while the other quantities on the right-hand side — in particular,
the temperature, since the collapse is isothermal — remain constant. Therefore, the pressure forces
continue to decrease relative to GMrρ/r

2 during the collapse.

• Q12.18

(a). Equation (12.19) of Ostlie & Carroll is the equation of motion for gas at radius r in a non-rotating
sperical cloud,

d2r

dt2
= −GMr

r2
.

If the cloud is in fact rotating with a (uniform) angular velocity ω, then material in the plane
perpendicular to the axis of rotation will experience an outward centrifugal acceleration (not
centripetal acceleration; the book is wrong in its terminology), and the equation of motion becomes

d2r

dt2
= −GMr

r2
+ ω2r.
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Note that this is strictly only valid if the cloud remains spherical as it collapses; any significant
departures from sphericity will mean that the gravitational term on the right-hand side no longer
scales strictly as r−2.

For the gas at radius r in the equatorial plane, the angular momentum per unit mass is

j = ωr2.

Assuming that this gas does not exchange angular momentum with gas at neighboring radii, this
angular momentum does not change as the gas moves inwards, and so ω must change according
to the relation

ωr2 = ω0r
2
0

Substituting this into the equation of motion above, we obtain

d2r

dt2
= −GMr

r2
+
ω2

0r
4
0

r3
.

In terms of the radial velocity vr, this can also be written as

vr
dvr
dr

=
1

2

dv2
r

dr
= −GMr

r2
+
ω2

0r
4
0

r3
.

Integrating with respect to r, we find

1

2
v2
r =

GMr

r
− ω2

0r
4
0

2r2
+ C.

To set the constant of integration C, we note that the cloud is initially at rest, when r = r0.
Hence,

C = −GMr

r0
+
ω2

0r
4
0

2r2
0

,

and the final expression for the radial velocity is

vr =

√
2GMr

(
1

r
− 1

r0

)
− ω2

0r
4
0

(
1

r2
− 1

r2
0

)
.

To find the final radius where the cloud collapse halts, we look for the point r = rf at which
vr = 0 in the above equation (other than the r = r0 point we’ve already imposed via the initial
condition). Setting vr = 0 and r = rf , and further making the assumption that rf � r0 (so that
1/rf � 1/r0), the equation becomes

2GMr

rf
− ω2

0r
4
0

r2
f

= 0

Solving this equation gives

rf =
ω2

0r
4
0

2GMr
,

which is the desired result

(b). Rearranging the above expression, the initial angular velocity can be expressed in terms of the
initial mass, initial radius and final mass as

ω0 =

√
2GMrrf

r4
0

.

Substituting in the supplied values for the mass and initial/final radii, the angular velocity is
found as ω0 = 2.65× 10−16 s−1.
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(c). The initial rotational velocity at the edge of the cloud is vrot,0 = ω0r0 = 4.08 m s−1 — not much
at all!

(d). With complete conservation of angular momentum, we must have

ω0Isphere,0 = ωfIdisk,f .

In terms of the initial and final radii, this is

2

5
ω0Mrr

2
0 =

1

2
ωfMrr

2
f

Using the value of ω0 calculated above, plus the supplied values of r0 and rf , the final angular
velocity is found as ωf = 2.25×10−10 s−1. At a radius r = 100 AU, this translates into a rotational
velocity vrot = ω r = 3.37× 103 m s−1.

(e). The time for one complete revolution is t = 2π/ω = 2.79 × 1010 s = 884 yr. From Kepler’s third
law (which we can use in its original form because we’re dealing with a 1M� system), the orbital
period at 100 AU is P/(yr) = (a/AU)3/2 = 1000 yr. The discrepancy between the two comes
from the fact that we have enforced uniform (rigid) rotation in the disk; in reality, the disk would
be differentially rotating, with the inner regions rotating with a shorter period than the outer
regions.
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