
Homework Assignment 12 — Solutions

• Q10.17

To confirm that the solution

D0(ξ) = 1− ξ2

6
, ξ1 =

√
6

is correct, we must check that it satisfies the Lane-Emden equation and the associated boundary
conditions. For a polytropic index n = 0, the Lane-Emden equation is
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Substituting the solution into the left-hand side of this equation, we have

1

ξ2
d

dξ

(
ξ2

dD0

dξ

)
=

1

ξ2
d

dξ

(
ξ2

d

dξ

[
1− ξ2

6

])
Working through the differentiations, this becomes
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The right-hand side matches the right-hand side of the Lane-Emden equation, and therefore the solution
satisfies the equation.

To check the boundary conditions, we note that

D0(0) = 1− 02

6
= 1,

D′0(0) = −0

3
= 0,

and

D0(ξ1) = 1−
√

6
2

6
= 0.

Therefore, all boundary conditions are satisfied, and we have proven that the n = 0 polytrope has the
given solution.

• Q10.18

For any polytrope, the density structure is described by

ρ(r) = ρc[Dn(r)]n

(see Ostlie & Carroll, p. 336). In the n = 0 case, this becomes

ρ(r) = ρc,

indicating that the density is constant everywhere — that is, the polytrope has a homogeneous density
structure.

• Q10.19

The mass of a polytrope is given by

M = −4πλ3nρcξ
2
1

dDn

dξ

∣∣∣∣
ξ1

.

(Ostlie & Carroll, p. 338). In the n = 5 case, the solution of the Lane-Emden equation is

D5(ξ) = [1 + ξ2/3]−1/2
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Figure 1: A plot of the normalized density ρ/ρc as a function of scaled radius r/λn, for the n = 0 (solid),
n = 1 (dotted) and n = 5 (dashed) polytropes.

(O & C, ibid.). The gradient of this solution at ξ1 is

dDn

dξ

∣∣∣∣
ξ1

= − ξ1
3(1 + ξ21/3)3/2

,

and thus the mass of the n = 5 polytrope is

M = 4πλ3nρc
ξ31

3(1 + ξ21/3)3/2
.

Although ξ1 → ∞, this mass remains finite because the last term on the right-hand side does not
diverge:

lim
ξ1→∞

ξ31
3(1 + ξ21/3)3/2

=
√

3,

and thus
M =

√
34πλ3nρc

• Q10.20

(a). See Fig. 1 for the plot.
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(b). Looking at the plot, it can be concluded that density becomes more concentrated toward the
center (r = 0) for increasing polytropic index.

(c). An adiabatically convective model has n = 1.5 (Ostlie & Carroll, pp. 338–339), while a model
in radiative equilibrium (i.e., the Eddington standard model) has n = 3 (Ostlie & Carroll, pp.
339–340). Given the trend noted in (b), the radiative equilibrium model should be more centrally
condensed than the adiabatically convective model.

(d). Convection tends to result in shallow temperature gradients, which lead to a ‘fluffier’, less-
condensed star. Radiative diffusion, on the other hand, requires steeper temperature gradients
in order to drive the radiative flux through the star; hence, the star must be more centrally
condensed.

• Q10.21

The hydrogen-burning lifetime can be estimated as

tH ≈
Enuclear

L
≈ 0.007fMc2

L

where f is the fraction of the star’s mass (assumed to be pure hydrogen) converted from hydrogen into
helium; M is the stellar mass; and L the luminosity. The factor 0.007 comes from the fact that the H
to He convesion releases 0.7% of the rest mass as energy (see, e.g., Example 10.3.2 of Ostlie & Carroll).

For the low-mass star, f = 1 (as per the question). With M = 0.072 M� and log10 L/L� = −4.3, we
find tH ≈ 4.7× 1021 s ≈ 1.5× 1014 yr — much longer than the age of the Universe.

For the high-mass star, f = 0.1 (from Example 10.3.2). With M = 85 M� and log10 L/L� = 6.006, we
find tH ≈ 2.7× 1013 s ≈ 0.87× 106 yr — shorter than the duration of human existence on Earth!

• Q10.23

(a). The Eddington luminosity is given by

LEd =
4πGc

κ̄
M

(Ostlie & Carroll, eqn. 10.114). Plugging in the supplied values for the 0.074 M� star gives a
luminosity Led = 9.37 × 104 L� — orders of magnitude larger than the star’s actual luminosity.
Therefore, radiation pressure will not be significant in the stability of low-mass main sequence
stars.

(b). For the 120 M� star, if the opacity is due to electron scattering, then eqn. (9.27) of O & C,
with X = 0.7, gives κ̄ = 0.034 m2 kg−1. Plugging in the other supplied values, the Eddington
luminosity is Led = 4.59× 106 L�. This is somewhat larger than the actual luminosity of the star
(L = 1.79× 106 L�), and thus although the star remains below the Eddington limit, it is close to
the limit — radiation pressure is important.
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