Homework Assignment 9 — Solutions

e Q9.17
Within the Eddington approxiation, the specific intensity is given by

;o 0=0</2
RN T/2<0<T7

(see Fig. 9.15 of Ostlie & Carroll). From eqn. (9.3) of O & C, the mean intensity is defined by

1 2m ™ '
<I>7E/O /0 I'sinfd6fde.

Splitting the integral into two intervals (corresponding to the two intervals in the definition above for

I), this becomes
1 2 pm/2 2 pm
(I)=— / / Ioutsin9d9d¢+/ / Iy sinfdfde | .
4m 0 0 0 /2

Doing the integrals! (for constant Iy, and Iiy,),

1
<I> = 5 (Iout + Iin) 9

which is the correct result (cf. C' & O, eqn. 9.46).

A similar procedure is used to find the flux and the radiation pressure. From eqn. (9.8) of O & C, the
flux is defined by

27 T
Froqg = / / I cos@sinfdfde.
0 0

Splitting the integral into two intervals, and substituting in for I, this becomes

27 /2 27 ™
Fraq = / / Tyt cosOsin 6 d6 do +/ / Iy cosOsin 0 df de.
o Jo 0o Jr/2

Doing the integrals,
Frad :W(Iout *Ii ),

which is the correct result (cf. C' & O, eqn. 9.47).
Likewise, from eqn. (9.9) of O & C, the radiation pressure is defined by

1 27 T
Pog =~ / / Icos? 0sinfdo de.
¢ Jo 0

Splitting the integral into two intervals, and substituting in for I, this becomes

27 pm/2 27 o
Prag = } / / Iout cos® 0sin 0 d do + / / Iincos?fsinfdode | .
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Doing the integrals,
2T

Prad = § (Iout + Iin) )

which is the correct result (cf. C & O, eqn. 9.48).

IThe @ integral can be made more straightforward using the subtitution p = cos#é.



e Q9.18

Solving the radiative transfer equation within the Eddington approximation give the mean intensity as
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(cf. Carroll & Ostlie, eqn. 9.50). Substituting in eqn. (9.46) for the mean intensity, this becomes

2

2
? (Iout + Iin) = Frad (TV + ) .

3
This equation is combined with eqn. (9.47),
Frad == 7T(Iout - Iin)7

to give a pair of simultaneous equation for I,,¢ and I,. First eliminating [;,, we obtain

2 F, 2
— | Lous + Lous — ad ) = Foaalmv+ 5.
3 s 3

Rearranging leads to the result
3 4
Iout = 7Frad (Tv + ) .

4 3

Substituting this back into the flux equation (9.47) leads to the corresponding expression for I,

Ii = EFradTv-

(Note that I =0 at 75, = 0, in accordance with the boundary conditions used to derive eqn. 9.50).

The anisotropy of the radiation field is characterized by the departure of the ratio

@ TV+4/3

Ii Tv

from unity. For a one percent anisotropy, as asked in the question, we have

1.01 = ﬂ;

Tv
solving for the optical depth, we find 7, = 133.

e Q9.20

Within the Eddington approximation, eqn. (9.50) of Ostlie & Carroll gives an expression for the mean
intensity (I),
47 2
— () = Fra v P
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For an atmosphere in radiative equilibrium, (I) = S, and so the source function is given (after a little

rearrangement) by
3 2
S=—F v+ =)
dr (T + 3)

Applying this expression at optical depth 7, = 2/3 gives S(7, = 2/3) = 7F}.q, which is the desired
result.



e Q9.21

The general solution of the radiative transfer equation (9.54) is
TX,0
[)\(0) =1y 0e ™ + / She” ™ dry
0

(TI've flipped the integration order relative to Ostlie € Carroll, as this is a more intuitive way to write
the solution). For a plane-parallel slab with no radiation entering from the outside (as stipulated in
the question), I o = 0 and so

TX,0
IA(O):/ She ™ dry.
0

If the source function does not depend on position, this simplifies to
TX,0
I,\(O)ZS)\/ e ™ dry =Sy (1—6_7“’0).
0

In the 7,0 > 1 limit, the exponential term on the right-hand side goes to zero, and so
I,(0) = S,.

With the added assumption of thermodynamic equilibrium, the source function Sy equals the Planck
function By, and so
I5(0) = By;

that is, the emergent radiation is blackbody radiation, the desired result.

In the 75 < 1 limit, the exponential term can be approximated using a first-order Taylor series
expansion,
eTA’O ~1- TX,05

and so
I (0) = Sx (1 = 14 7x0) = Sama0 = SxkapL,

where the second equality follows because the opacity x) and density p are constant througout the
slab. Remembering that the source function is defined as

where j) and k) are the wavelength-dependent emissivity and opacity of the slab, it follows that
I .
I,(0) = “=kxpL = japL;
K

therefore, the slab will show emission lines where j is large, the desired result.

e Q9.22

The general solution of the radiative transfer equation (9.54) is
TX,0
I)\(O) = I)\70677’\’0 + / She ™ dry
0
If the source function does not depend on position, this simplifies to

TX,0
I(0) =T pe" ™0 + 5,\/ e ™ dry =Loe ™0 + 5y (1 —e ™).
0

In the 7,0 > 1 limit, the exponential terms on the right-hand side go to zero, and so

1,(0) = Sh.



With the added assumption of thermodynamic equilibrium, the source function S equals the Planck
function By, and so
I5(0) = By;

that is, the emergent radiation is blackbody radiation, the desired result.

In the 7y < 1 limit, the exponential term can be approximated using a first-order Taylor series
expansion,
e~ 1 -1y,

and so
[,\(O) = I)\’O(l — 7‘)\’0) + 5 (1 -1+ TA,O) = [)\’0(1 — 7')\70) + S)\T,\’o.

Since we have assumed Ty < 1, this value lies somewhere between I ¢ and Sy. To obtain absorption
lines superimposed on the spectrum of the incident radiation (I ), we require I5(0) < I, which
means that Sy < I,o. Conversely, to obtain emission lines superimposed on the spectrum of the
incident radiation, we require I (0) > I o, which means that Sy > I o. These are the desired results.

Q9.23

The general equation for the emergent intensity from a plane-parallel atmosphere is
(oo}
I,(0) = / Sy sec § e™ v sec? dry v
0

(from eqn. 9.55 of Ostlie & Carroll). Assuming a linearly varying source function
Sy = ax + by,
the intensity becomes
o0
1,(0) = / (ax + baTay)secle™ secd dry v
0
This integrates to

1,(0) = [—e* secO7x v (ax + by cosf + b}ﬂ_}\’v)]oo

0 =ax + by cos ),

which is the desired result.



