
Homework Assignment 9 — Solutions

• Q9.17

Within the Eddington approxiation, the specific intensity is given by

I =

{
Iout 0 ≤ θ < π/2

Iin π/2 < θ ≤ π

(see Fig. 9.15 of Ostlie & Carroll). From eqn. (9.3) of O & C, the mean intensity is defined by

〈I〉 =
1

4π

∫ 2π

0

∫ π

0

I sin θ dθ dφ.

Splitting the integral into two intervals (corresponding to the two intervals in the definition above for
I), this becomes

〈I〉 =
1

4π

(∫ 2π

0

∫ π/2

0

Iout sin θ dθ dφ+

∫ 2π

0

∫ π

π/2

Iin sin θ dθ dφ

)
.

Doing the integrals1 (for constant Iout and Iin),

〈I〉 =
1

2
(Iout + Iin) ,

which is the correct result (cf. C & O, eqn. 9.46).

A similar procedure is used to find the flux and the radiation pressure. From eqn. (9.8) of O & C, the
flux is defined by

Frad =

∫ 2π

0

∫ π

0

I cos θ sin θ dθ dφ.

Splitting the integral into two intervals, and substituting in for I, this becomes

Frad =

∫ 2π

0

∫ π/2

0

Iout cos θ sin θ dθ dφ+

∫ 2π

0

∫ π

π/2

Iin cos θ sin θ dθ dφ.

Doing the integrals,
Frad = π (Iout − Iin) ,

which is the correct result (cf. C & O, eqn. 9.47).

Likewise, from eqn. (9.9) of O & C, the radiation pressure is defined by

Prad =
1

c

∫ 2π

0

∫ π

0

I cos2 θ sin θ dθ dφ.

Splitting the integral into two intervals, and substituting in for I, this becomes

Prad =
1

c

(∫ 2π

0

∫ π/2

0

Iout cos2 θ sin θ dθ dφ+

∫ 2π

0

∫ π

π/2

Iin cos2 θ sin θ dθ dφ

)
.

Doing the integrals,

Prad =
2π

3c
(Iout + Iin) ,

which is the correct result (cf. C & O, eqn. 9.48).

1The θ integral can be made more straightforward using the subtitution µ = cos θ.
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• Q9.18

Solving the radiative transfer equation within the Eddington approximation give the mean intensity as

4π

3
〈I〉 = Frad

(
τv +

2

3

)
.

(cf. Carroll & Ostlie, eqn. 9.50). Substituting in eqn. (9.46) for the mean intensity, this becomes

2π

3
(Iout + Iin) = Frad

(
τv +

2

3

)
.

This equation is combined with eqn. (9.47),

Frad = π(Iout − Iin),

to give a pair of simultaneous equation for Iout and Iin. First eliminating Iin, we obtain

2π

3

(
Iout + Iout −

Frad

π

)
= Frad

(
τv +

2

3

)
.

Rearranging leads to the result

Iout =
3

4π
Frad

(
τv +

4

3

)
.

Substituting this back into the flux equation (9.47) leads to the corresponding expression for Iin,

Iin =
3

4π
Fradτv.

(Note that I = 0 at τv = 0, in accordance with the boundary conditions used to derive eqn. 9.50).

The anisotropy of the radiation field is characterized by the departure of the ratio

Iout
Iin

=
τv + 4/3

τv

from unity. For a one percent anisotropy, as asked in the question, we have

1.01 =
τv + 4/3

τv
;

solving for the optical depth, we find τv = 133.

• Q9.20

Within the Eddington approximation, eqn. (9.50) of Ostlie & Carroll gives an expression for the mean
intensity 〈I〉,

4π

3
〈I〉 = Frad

(
τv +

2

3

)
.

For an atmosphere in radiative equilibrium, 〈I〉 = S, and so the source function is given (after a little
rearrangement) by

S =
3

4π
Frad

(
τv +

2

3

)
.

Applying this expression at optical depth τv = 2/3 gives S(τv = 2/3) = πFrad, which is the desired
result.
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• Q9.21

The general solution of the radiative transfer equation (9.54) is

Iλ(0) = Iλ,0e−τλ,0 +

∫ τλ,0

0

Sλe−τλ dτλ

(I’ve flipped the integration order relative to Ostlie & Carroll, as this is a more intuitive way to write
the solution). For a plane-parallel slab with no radiation entering from the outside (as stipulated in
the question), Iλ,0 = 0 and so

Iλ(0) =

∫ τλ,0

0

Sλe−τλ dτλ.

If the source function does not depend on position, this simplifies to

Iλ(0) = Sλ

∫ τλ,0

0

e−τλ dτλ = Sλ
(
1− e−τλ,0

)
.

In the τλ,0 � 1 limit, the exponential term on the right-hand side goes to zero, and so

Iλ(0) = Sλ.

With the added assumption of thermodynamic equilibrium, the source function Sλ equals the Planck
function Bλ, and so

Iλ(0) = Bλ;

that is, the emergent radiation is blackbody radiation, the desired result.

In the τλ,0 � 1 limit, the exponential term can be approximated using a first-order Taylor series
expansion,

eτλ,0 ≈ 1− τλ,0,

and so
Iλ(0) = Sλ (1− 1 + τλ,0) = Sλτλ,0 = SλκλρL,

where the second equality follows because the opacity κλ and density ρ are constant througout the
slab. Remembering that the source function is defined as

Sλ ≡
jλ
κλ
,

where jλ and κλ are the wavelength-dependent emissivity and opacity of the slab, it follows that

Iλ(0) =
jλ
κλ
κλρL = jλρL;

therefore, the slab will show emission lines where jλ is large, the desired result.

• Q9.22

The general solution of the radiative transfer equation (9.54) is

Iλ(0) = Iλ,0e−τλ,0 +

∫ τλ,0

0

Sλe−τλ dτλ

If the source function does not depend on position, this simplifies to

Iλ(0) = Iλ,0e−τλ,0 + Sλ

∫ τλ,0

0

e−τλ dτλ = Iλ,0e−τλ,0 + Sλ
(
1− e−τλ,0

)
.

In the τλ,0 � 1 limit, the exponential terms on the right-hand side go to zero, and so

Iλ(0) = Sλ.
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With the added assumption of thermodynamic equilibrium, the source function Sλ equals the Planck
function Bλ, and so

Iλ(0) = Bλ;

that is, the emergent radiation is blackbody radiation, the desired result.

In the τλ,0 � 1 limit, the exponential term can be approximated using a first-order Taylor series
expansion,

eτλ,0 ≈ 1− τλ,0,

and so
Iλ(0) = Iλ,0(1− τλ,0) + Sλ (1− 1 + τλ,0) = Iλ,0(1− τλ,0) + Sλτλ,0.

Since we have assumed τλ,0 < 1, this value lies somewhere between Iλ,0 and Sλ. To obtain absorption
lines superimposed on the spectrum of the incident radiation (Iλ,0), we require Iλ(0) < Iλ,0, which
means that Sλ < Iλ,0. Conversely, to obtain emission lines superimposed on the spectrum of the
incident radiation, we require Iλ(0) > Iλ,0, which means that Sλ > Iλ,0. These are the desired results.

• Q9.23

The general equation for the emergent intensity from a plane-parallel atmosphere is

Iλ(0) =

∫ ∞
0

Sλ sec θ eτλ,v sec θ dτλ,v

(from eqn. 9.55 of Ostlie & Carroll). Assuming a linearly varying source function

Sλ = aλ + bλτλ,v,

the intensity becomes

Iλ(0) =

∫ ∞
0

(aλ + bλτλ,v) sec θ eτλ,v sec θ dτλ,v

This integrates to

Iλ(0) =
[
−e− sec θτλ,v(aλ + bλ cos θ + bλτλ,v)

]∞
0

= aλ + bλ cos θ,

which is the desired result.
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