
Homework Assignment 8 — Solutions

• Q9.11

(a). The mean free path is calculated from the opacity and density as

` =
1

κρ

(cf. Ostlie & Carroll, above eqn. 9.15). With κ = κ̄ = 0.217 m2 kg−1 and ρ = 1.53× 105 kg m−3,
the mean free path is found as ` = 3.01× 10−5 m

(b). From eqn. (9.30) of O & C, the net (‘as-the-crow-flies’) distance d moved by a photon that random
walks through N steps (of average length equal to the mean free path `) is

d = `
√
N.

For a photon walking from the center of Sun to the surface, with constant ` and assuming no
destruction and recreation, the number of steps taken can be found by setting d = R� and solving
for N ,

N =
R2
�
`2
.

The total path length traveled by the photon is then given by

D = N` =
R2
�
`
.

Since the photon travels at the speed of light, the time taken for it to traverse this path is

t =
D

c
=
R2
�
`c
.

For ` = 3.01×10−5 m from above, this expression gives an average escape time of t = 5.36×1013 s =
1.70× 106 yr.

• Repeat the second part of problem 9.11, but assume a typical photon mean free path of 0.003 m instead.
How does this estimate of the leakage time for radiative diffusion compare with the time for a photon
to escape if it doesn’t interact at all with matter and just flies straight through the Sun?

With ` = 0.003 m, the leakage time is t = 5.39 × 1011 s = 1.71 × 104 yr. If the photon didn’t interact
at all with matter (i.e., behaved like a neutrino), then the escape time would be t = R�/c = 2.32 s —
a factor of R�/` = 2.32× 1011 quicker!

• We can form a crude estimate of the luminosity of the Sun as follows: we approximate the total
energy in radiation inside the Sun as the volume of the Sun times the radiation energy density u =
aT 4, using a typical interior temperature of 4.5 × 106 K. We then estimate the Sun’s luminosity as
this radiation energy over the leakage time from the previous (supplemental) problem. How does this
estimated luminosity compare with the listed value L� = 3.839× 1026 W?

Following this procedure, the radiation energy will be given by

E =
4πR3

�
3

aT 4,

which, with the given temperature, evaluates to E = 4.38× 1038 J. Dividing by the leakage timescale
of 5.39× 1011 s gives a luminosity estimate of L� = 8.13× 1026 W, which is only factor ∼ 2 larger than
the listed value.
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• We can calculate the (thermal) plasma energy density at the center of the Sun as uplasma,c = 3
2nckTc,

with nc ∼ 1032 cm−3 and Tc = 1.5 × 107 K. How does the plasma energy density compare with the
radiation energy density (urad,c = aT 4

c ) at the center of Sun? If we assume the same ratio of plasma
energy to radiation energy throughout the Sun’s interior, and use our estimate of the leakage time from
the first supplemental problem, about how long would it take for the Sun to “turn off” if all the nuclear
reactions in the Sun’s core stopped?

Using the expressions given, the plasma energy density is uplasma,c = 3.11 × 1016 J cm−3 = 3.11 ×
1022 J m−3, while the radiation energy density is urad,c = 3.83 × 1013 J m−3 — around 9 orders of
magnitude smaller. An estimate of the rate of loss of energy (i.e., the Sun’s luminosity) can be found
by applying the second supplemental problem ‘in reverse’:

L� ≈
V�urad,c

tleak
,

where V� ≡ 4πR3
�/3 is the volume of the Sun, and tleak is the leakage time. Without nuclear reactions

in the core, the Sun will exhaust its reserves of thermal energy (heat) over a turn-off timescale

toff ≈
V�uplasma,c

L�
.

Combining the two expressions,

toff ≈
uplasma,c

urad,c
tleak.

Plugging in the supplied energy density values, and tleak = 5.39 × 1011 s from the first supplemental
problem, gives tleak ≈ 4.4× 1020 s ≈ 1.4× 1013 yr — much longer than the age of the Universe!

It turns out there was a typo in the original question; the supplied number density was given in m−3,
not cm−3 as stated. With this error fixed, the leakage time is tleak ≈ 1.4 × 107 yr, which is far more
sensible.

• Q9.12

From Kirchhoff’s laws (Sec. 5.1 of Ostlie & Carroll), a hot gas in front of a cooler background radiation
source (as is the case for an outward-increasing temperature) would show emission lines at wavelengths
where the opacity is large.

• Q9.13

The shell of gas would appear as a ring if it were optically thin. This is because in the optically thin
limit, we see emission from all parts of the shell (and not just from the very outer layers). Sight
lines at the limb of the shell pass through a greater amount of gas than those coming from the center
(due to geometrical projection), and therefore appear brighter. Essentially, this is the reverse of limb
darkening!

• Q9.15

To derive eqn. (9.35), we start with the radiative transfer equation given in (9.34) of Ostlie & Carroll,

− 1

κλρ

dIλ
ds

= Iλ − Sλ.

Rearranging,
dIλ
ds

+ κλρIλ = κλρSλ.

This is a first-order inhomogeneous differential equation, which — for constant κλ — is solved by
multiplying through by the integrating factor eκλρs. This gives

eκλρs
dIλ
ds

+ κλρ eκλρsIλ = κλρ eκλρsSλ,
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which can also be written as
d

ds
(eκλρsIλ) = κλρ eκλρsSλ.

Integrating with respect to s, with a constant source function Sλ, leads to

eκλρsIλ = eκλρsSλ + C,

where C is a constant of integration. If Iλ = Iλ,0 at s = 0, this constant must be chosen as

C = Iλ,0 − Sλ,

giving
Iλ(s) = Sλ + (Iλ,0 − Sλ)e−κλρs = Iλ,0e−κλρs + Sλ

(
1− e−κλρs

)
.

This is the desired result.

• Q9.16

(a). The starting point is the ratiative transfer equation (RTE) given in (9.34) of Ostlie & Carroll,

− 1

κλρ

dIλ
ds

= Iλ − Sλ.

The distance ds along a ray at an angle θ′ to the radial direction can be related to the change in
radius dr via

ds = dr sec θ′

(see, e.g., Fig. 9.16 of O & C ). Combining the two expressions,

−cos θ′

κλρ

dIλ
dr

= Iλ − Sλ,

which is the desired result.

(b). Multiplying the above equation by cos θ′ and integrating over all solid angles gives

− 1

κλρ

d

dr

∫ 2π

0

∫ π

0

Iλ cos2 θ′ sin θ′ dθ′ dφ =

∫ 2π

0

∫ π

0

Iλ cos2 θ′ sin θ′ dθ′ dφ

(note that the Sλ term on the right-hand side vanishes, because it is independent of direction).
Using the definition of specific radiative flux (eqn. 9.8 of O & C ) and radiation pressure (eqn. 9.9),
this can be written as

− c

κλρ

dPrad,λ

dr
= Frad,λ.

Integrating over all wavelengths, this becomes

− c
ρ

∫ ∞
0

1

κλ

dPrad,λ

dr
dλ =

∫ ∞
0

Frad,λ dλ ≡ Frad.

In general, the integral on the left-hand side cannot be simplified. However, if we are beneath
the outermost layers, the radiation field will be close to blackbody, and we can approximate the
radiation pressure using the Planck function,

Prad,λ =
4π

3c
Bλ

(see eqn. 9.10 of O & C ). The gradient of the radiation pressure can then be evaluated as

dPrad,λ

dr
=

4π

3c

dBλ
dr

=
4π

3c

∂Bλ
∂T

dT

dr
,
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where the second equality holds because Bλ depends on the temperature T but not on the density.
Substituting this expression back into the RTE gives

−4π

3ρ

dT

dr

∫ ∞
0

1

κλ

∂Bλ
∂T

dλ = Frad.

Making use of the definition of the Rosseland mean opacity (eqn. 9.21 of O & C ), the integral
becomes

−4π

3ρ

dT

dr

1

κ̄

∫ ∞
0

∂Bλ
∂T

dλ = Frad.

With further application of the chain rule,

−4π

3ρ

1

κ̄

d

dr

(∫ ∞
0

Bλ dλ

)
= Frad.

But since

Prad =
4π

3c

∫ ∞
0

Bλ dλ

(eqn. 9.11 of O & C ), we have

− c

ρκ̄

dPrad

dr
= Frad.

A little rearrangement gives
dPrad

dr
=
κ̄ρ

c
Frad,

which is the desired result.
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