
Homework Assignment 7 — Solutions

• Q9.1

The total energy of blackbody photons in an eye of volume Veye is given by

Ebb = Veyeu = VeyeaT
4

where the second equality comes from the expression u = aT 4 for the energy density of blackbody
radiation. With Veye = 4πr3/3 = 1.41 × 10−5 m3 and T = 37◦ C = 310 K, the energy of blackbody
photons follows as Ebb = 9.88× 10−11 J.

To consider the contribution of the light bulb toward the radiation in the eye, the net amount of energy
entering the pupil in time dt is

E =
apup
4πd2

Ldt,

where L is the bulb’s luminosity, apup is the pupil area, and d the distance betwen the bulb and the
pupil. This energy has a density

u =
E

apupcdt
=

L

4πd2c

(from arguments similar to those on p. 233 of Ostlie & Carroll). Within the eye, assuming no beam
divergence, the energy from the bulb occupies a cylindrical volume extending from the pupil to the
retina (length 2r, area apup), and so the total energy is

Ebulb = 2rapupu =
2rapupL

4πd2c

Plugging in the values of L = 100,W, d = 1 m, and the dimensions of the eye and pupil, the ‘bulb’
energy within the eye is found as Ebulb = 7.96× 10−15 J

This value is, surprisingly, much smaller than the energy of the blackbody photons. However, the
receptors in our eyes are only sensitive to light in the visible range; whereas the blackbody photons,
with a Wien-peak wavelength of λmax = 0.3 cm/T ≈ 10µm, are in the mid-infrared. Thus, it appears
dark when we close our eyes because we cannot detect these blackbody photons.

• Q9.2

(a). The number density of blackbody photons with wavelength between λ and λ + dλ is given by
dividing the blackbody energy uλ dλ in the wavelength range by the photon energy hν = hc/λ:

nλ dλ =
uλ
hc/λ

dλ =
λuλ
hc

dλ.

Using the expression for the blackbody energy density uλ (cf. Ostlie & Carroll, eqn. 9.5), this
becomes

nλ dλ =
8π/λ4

exp(hc/λkT )− 1
dλ.

(b). The total number density of photons can be obtained by integrating nλdλ over all wavelengths,

n =

∫ ∞
0

nλ dλ =

∫ ∞
0

8π/λ4

exp(hc/λkT )− 1
dλ.

This is a messy integral, but can be evaluated using software such as Mathematica to find the
result

n = 16πζ(3)

(
kT

hc

)3

where ζ is the Riemann zeta function, which has ζ(3) ≈ 1.202.

For an oven at 477 K, this expression gives a number density n = 2.2× 1015 m−3; with a volume
of 0.5 m3, the total number of photons is therefore 1.1× 1015.
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• Q9.3

(a). The average energy per photon is given by the ratio of the total energy density

u = aT 4

and the total number density of photons, which from Q9.2(b) is

n = 16πζ(3)

(
kT

hc

)3

.

Thus,
u

n
=

ah3c3

16πζ(3)k4
kT = 2.70 kT,

which is the desired result

(b). For the center of the Sun T = 1.57× 107 K, giving u/n = 5.85× 10−16 J = 3.65 keV; whereas for
the photosphere T = 5777 K, giving u/n = 2.15× 10−19 J = 1.34 eV.

• Q9.4

The total radiation pressure is given by

Prad =

∫ ∞
0

Prad,λ dλ.

Since blackbody radiation is isotropic, eqn. (9.10) of Ostlie & Carroll can be used to find Prad,λ as

Prad,λ =
4π

3c
Iλ =

4π

3c
Bλ,

where Bλ is the usual Planck function. Combining these equations,

Prad =
4π

3c

∫ ∞
0

Bλ dλ.

But as demonstrated in eqn. (9.7), the integral over the Planck function is related to the total energy
density u, ∫ ∞

0

Bλ dλ =
c

4π
u,

Hence,

Prad =
4π

3c

c

4π
T 4 =

1

3
u,

which is the desired result.

• Q9.5

From eqn (9.8) of Ostlie & Carroll, the specific radiative flux produced by a blackbody surface with
Iλ = Bλ is

Frad,λ =

∫ 2π

0

∫ π/2

0

Bλ cos θ sin θ dθ dφ.

(note that the θ integral only extends to π/2, since we assume only outward radiation). Because Bλ
does not depend on direction, we have

Frad,λ = Bλ

∫ 2π

0

∫ π/2

0

cos θ sin θ dθ dφ = πBλ.

To calculate the bolometric radiative flux, we next integrate Frad,λ over all wavelengths:

Frad =

∫ ∞
0

Frad,λ dλ = π

∫ ∞
0

Bλ dλ.
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From eqn. (9.7), the integral over the Planck function is∫ ∞
0

Bλ dλ =
σ

π
T 4,

whence we obtain
Frad = π

σ

π
T 4 = σT 4.

As a final step, we multiply this flux (= energy loss per unit surface area) by the total surface area
(= 4πR2), to obtain the bolometric luminosity of a blackbody star as

L = 4πR2σT 4.

As desired, this result is in agreement with eqn. (3.17) (allowing for the fact that T = Te for the
blackbody star).

• Q9.6

The mean free path is given by eqn (9.12) of Ostlie & Carroll,

` =
1

nσ

where n is total number density of particles, and σ is the collision cross section. The number density
is related to the mass density by

n =
ρ

µmH
,

where µ is the mean molecular weight, expressed in units of the hydrogen atom mass mH = 1.67 ×
10−27 kg. Assuming that the air is all nitrogen (rather than the actual ∼ 80%), and taking ρ =
1.2 kg m−3 and µ ≈ 28, the number density is found as n = 2.57× 1025 m−3. Combining this with the
nitrogen interaction cross section1 σ = π(2r)2 = 1.26× 10−19 m2 (for r = 0.1 nm), the mean free path
is finally obtained as ` = 3.10× 10−7 m.

If the nitrogen molecules are travelling at the RMS speed, then the time between collisions is

∆t =
`

vrms
.

Assuming a Maxwell-Boltzmann velocity distribution, eqn. (8.3) gives

vrms =

√
3kT

µmH
,

which, with T = 300 K and µ ≈ 28, gives vrms = 515 ms−1. Hence, the time between collisions is found
as ∆t = 6.02× 10−10 s.

• Q9.7

Suppose we can see some fixed optical depth τ through the Earth’s atmosphere. This optical depth
translates into a physical distance dz via

dz =
τ

κρ
,

where the opacity κ and density ρ are assumed constant. Taking κ = 0.03 m2 kg−1 from Example 9.2.2,
and ρ = 1.2 kg m−3, gives

dz = τ × 27.8 m.

In reality we don’t see photons all coming from the same optical distance away — but on average2,
the photons reaching us will have traveled through an optical depth τ = 1. Hence, the distance seen is
dz = 27.8 m — much smaller than how far we really see on Earth (assuming there’s no fog!).

1The discussion on p. 240 of Ostlie & Carroll explains where the factor 2 comes from.
2This can be demonstrated by considering that there is a exp(−τ) probability that a photon originating an optical depth τ

away will reach an observer. If photons are emitted at all optical depths with equal probabilty, then the average optical depth
traveled by photons reaching the eye is 〈τ〉 =

∫∞
0

τ exp(−τ) dτ = 1
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