Homework Assignment 7 — Solutions

e Q9.1
The total energy of blackbody photons in an eye of volume Vey. is given by

B, = Veyett = VyeaT?

where the second equality comes from the expression u = aT* for the energy density of blackbody
radiation. With Veye = 4mr3/3 = 1.41 x 107 m? and T' = 37° C = 310K, the energy of blackbody
photons follows as Fyp, = 9.88 x 1071 J.

To consider the contribution of the light bulb toward the radiation in the eye, the net amount of energy
entering the pupil in time df is
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where L is the bulb’s luminosity, apup is the pupil area, and d the distance betwen the bulb and the
pupil. This energy has a density
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(from arguments similar to those on p. 233 of Ostlie € Carroll). Within the eye, assuming no beam
divergence, the energy from the bulb occupies a cylindrical volume extending from the pupil to the
retina (length 2r, area apyp), and so the total energy is
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Plugging in the values of L = 100, W, d = 1 m, and the dimensions of the eye and pupil, the ‘bulb’
energy within the eye is found as Epyp = 7.96 x 10712 ]

This value is, surprisingly, much smaller than the energy of the blackbody photons. However, the
receptors in our eyes are only sensitive to light in the visible range; whereas the blackbody photons,
with a Wien-peak wavelength of A\jax = 0.3 cm/T &~ 10 pm, are in the mid-infrared. Thus, it appears
dark when we close our eyes because we cannot detect these blackbody photons.

e Q9.2

(a). The number density of blackbody photons with wavelength between A and A 4+ dA is given by
dividing the blackbody energy uy dX in the wavelength range by the photon energy hv = he/A:

U gy = A gy,

mdA = he

Using the expression for the blackbody energy density wy (cf. Ostlie & Carroll, eqn. 9.5), this
becomes
8/ A\

dA.
exp(he/AkT) — 1

n)\d>\:

(b). The total number density of photons can be obtained by integrating nyd\ over all wavelengths,
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This is a messy integral, but can be evaluated using software such as Mathematica to find the
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where ( is the Riemann zeta function, which has ¢(3) =~ 1.202.

For an oven at 477 K, this expression gives a number density n = 2.2 x 10> m~3; with a volume
of 0.5m?, the total number of photons is therefore 1.1 x 105,




e Q9.3
(a). The average energy per photon is given by the ratio of the total energy density
u=aTl*

and the total number density of photons, which from Q9.2(b) is
KT
=16m¢(3) | — | -
n=167¢3) (= )

u ah?c?
—=——— kT =2.T70kT
n  167¢(3)k* ’

Thus,

which is the desired result

(b). For the center of the Sun T = 1.57 x 107 K, giving u/n = 5.85 x 10716 J = 3.65keV; whereas for
the photosphere T = 5777 K, giving u/n = 2.15 x 10719 J = 1.34eV.

e Q94

The total radiation pressure is given by

Prad = / Prad,)\ dA.
0

Since blackbody radiation is isotropic, eqn. (9.10) of Ostlie & Carroll can be used to find Pyaq x as
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where B, is the usual Planck function. Combining these equations,
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But as demonstrated in eqn. (9.7), the integral over the Planck function is related to the total energy
density u,
/ Byd\ = —u,
0 4m
Hence,
4T ¢ 1
Pog=——T4==
“d =3 3"

which is the desired result.

e Q9.5

From eqn (9.8) of Ostlie & Carroll, the specific radiative flux produced by a blackbody surface with
I)\ = B)\ is
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(note that the 6 integral only extends to 7/2, since we assume only outward radiation). Because B)
does not depend on direction, we have
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To calculate the bolometric radiative flux, we next integrate Finq,\ over all wavelengths:

Fmd = / Fmd)\ d\ = 7T/ B>\ dA.
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From eqn. (9.7), the integral over the Planck function is
/ Bydx = 2714,
0 ™

whence we obtain

g
Froaqg = m=T* = oT*.
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As a final step, we multiply this flux (= energy loss per unit surface area) by the total surface area
(= 47 R?), to obtain the bolometric luminosity of a blackbody star as

L = 47 R*cT*.

As desired, this result is in agreement with eqn. (3.17) (allowing for the fact that T" = T, for the
blackbody star).

e Q9.6
The mean free path is given by eqn (9.12) of Ostlie & Carroll,
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where n is total number density of particles, and o is the collision cross section. The number density
is related to the mass density by

where p is the mean molecular weight, expressed in units of the hydrogen atom mass my = 1.67 x
1072"kg. Assuming that the air is all nitrogen (rather than the actual ~ 80%), and taking p =
1.2kgm™2 and p =~ 28, the number density is found as n = 2.57 x 102> m~3. Combining this with the
nitrogen interaction cross section! o = m(2r)? = 1.26 x 107 m? (for 7 = 0.1 nm), the mean free path
is finally obtained as £ = 3.10 x 10~ m.

If the nitrogen molecules are travelling at the RMS speed, then the time between collisions is
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Assuming a Maxwell-Boltzmann velocity distribution, eqn. (8.3) gives
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which, with T = 300K and p =~ 28, gives v;ms = 515 ms~!. Hence, the time between collisions is found
as At =6.02 x 107105,

e Q9.7

Suppose we can see some fixed optical depth 7 through the Earth’s atmosphere. This optical depth
translates into a physical distance dz via

dz = —,

Kp
where the opacity x and density p are assumed constant. Taking £ = 0.03m? kg~! from Example 9.2.2,
and p = 1.2kgm—3, gives
dz =7 x 27.8 m.

In reality we don’t see photons all coming from the same optical distance away — but on average?,

the photons reaching us will have traveled through an optical depth 7 = 1. Hence, the distance seen is
dz = 27.8 m — much smaller than how far we really see on Earth (assuming there’s no fog!).

1The discussion on p. 240 of Ostlie & Carroll explains where the factor 2 comes from.
2This can be demonstrated by considering that there is a exp(—7) probability that a photon originating an optical depth T
away will reach an observer. If photons are emitted at all optical depths with equal probabilty, then the average optical depth

traveled by photons reaching the eye is (1) = fooo Texp(—7)dr =1



