
Homework Assignment 6 — Solutions

• Q8.1

Room temperature is 294 K, so kT = 4.06 × 10−14 J = 0.0253 eV ≈ 1/40 eV. kT = 1 eV when
T = 11, 600 K, and kT = 13.6 eV when T = 158, 000 K.

• Q8.5

The Boltzmann equation gives us

n2
n1

=
g2
g1
e−(E2−E1)/kT = 4 e−10.2 eV/kT ,

so we have n2

n1
= 1% when e−10.2 eV/kT = 0.0025. Taking the logarithm of both sides gives−10.2 eV/kT =

−5.99, and solving for T gives T = 1.97 × 104 K. The same procedure for n2

n1
= 10% gives T =

3.21× 104 K.

• Q8.6

(a). From the Boltzmann equation,

n3
n1

=
g3
g1
e−(E3−E1)/kT = 9 e−12.1 eV/kT ,

which gives n3

n1
= 1 when T = 6.38× 104 K.

(b). When T = 85, 400 K, N3

N1
= 9 e−1.64 = 1.74, so if there are N1 = N atoms in the n = 1 state then

there are N3 = 1.74N atoms in the second excited state (n = 3).

(c). As T → ∞, the exponential factor in the Boltzmann equation becomes 1 for every value of n,
so the Boltzmann equation predicts that the distribution of electrons mirrors the values of the
degeneracies: level n has a number of electrons proportional to n2.

In reality, as T →∞ all atoms ionize, and all the electrons are free electrons.

• Q8.7

We have ZI = g1 + g2e
−10.2 eV/kT + g3e

−12.1 eV/kT , with g1 = 2(1)2 = 2, g2 = 2(2)2 = 8, and
g3 = 2(3)2 = 18. At T = 10, 000 K, this gives ZI = 2 + 5.81× 10−5 + 1.46× 10−5. We can see that the
second and third terms are much smaller than g1 = 2, so we have ZI ≈ 2.

• Q8.9

(a). The Saha equation is

NII

NI
=

2ZII

neZI

(
2πmekT

h2

)3/2

e−χI/kT .

We also have charge conservation

neV = NII

and conservation of nucleons

Nt = ρV/(mp +me) ≈ ρV/mp,

where Nt = NI + NII is the total number of hydrogen nuclei (whether in neutral hydrogen or
ionized hydrogen).

The first step is to replace the partition function ZI with the ground state degeneracy g1 = 2—
recall from question 8.7 that this is a good approximation at 10, 000 K, and in fact it is a good
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approximation for kT � 10.2 eV, or T � 120, 000 K. The partition function ZII of the proton is 1.
We can now write the Saha equation (for this pure hydrogen case, and assuming T � 120, 000 K)
as

NII

NI
=

1

ne

(
2πmekT

h2

)3/2

e−χI/kT =
V

NII

(
2πmekT

h2

)3/2

e−χI/kT ,

where we use charge conservation to get rid of ne in the final expression. We also have Nt =
NI + NII = NI (1 +NII/NI); from the Saha equation, we get Nt = NI (1 + x/NII), where x =

V
(
2πmekT

h2

)3/2
e−χI/kT . We can rearrange this as NI = Nt/ (1 + x/NII). Putting this in the Saha

equation gives

NII

Nt/ (1 + x/NII)
=

x

NII
,

or

N2
II

Nt
(1 + x/NII) = x.

This gives

N2
II

Nt
+ x

NII

Nt
− x = 0.

Dividing through by Nt, we have(
NII

Nt

)2

+
x

Nt

(
NII

Nt

)
− x

Nt
= 0. (1)

Now we use the conservation of nucleons, Nt ≈ ρV/mp and our expression for x, x = V
(
2πmekT

h2

)3/2
e−χI/kT ,

to get

x

Nt
=
V
(
2πmekT

h2

)3/2
e−χI/kT

ρV/mp
=

(
mp

ρ

)(
2πmekT

h2

)3/2

e−χI/kT ,

which we plug in to equation 1 to get(
NII

Nt

)2

+

(
NII

Nt

)(
mp

ρ

)(
2πmekT

h2

)3/2

e−χI/kT −
(
mp

ρ

)(
2πmekT

h2

)3/2

e−χI/kT = 0.

(b). Taking ρ = 10−6 kg m−3, we have(
NII

Nt

)2

+ 4.04 (T/1 K)
3/2

e−158,000K/T

(
NII

Nt

)
− 4.04 (T/1 K)

3/2
e−158,000K/T = 0.

Defining b ≡ 4.04 (T/1 K)
3/2

e−158,000K/T , we have the quadratic equation y2+by−b = 0, where y
is the ionization fraction NII/Nt. When b� 1, the quadratic term becomes negligible (remember,
y must be between 0 and 1, so y2 is also between 0 and 1), and the equation reduces to by−b ≈ 0,
which has solution y ≈ 1. When b � 1, the linear and constant terms become negligible and
we have y2 ≈ 0, so y ≈ 0. Plugging in T = 5000 K gives b = 2.7 × 10−8 � 1, and plugging in
T = 25, 000 K gives b = 2.9× 104 � 1, so we expect that our graph will go from y = NII/Nt ≈ 0
at the low temperature end to NII/Nt ≈ 1 at the high temperature end, with a transition at
temperatures where b ≈ 1 (in fact, NII/Nt = 0.5 when b = 0.5). Looking at the plot, we see
that these predictions are correct—the transition from fully neutral to fully ionized happens at a
temperature of about 9900 K, at which point b ≈ 0.5.
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• Q8.13

From Example 8.1.5, we have T = 5777 K and Pe = 1.5 N m−2 in the solar photosphere, and ZII = 2.30
for calcium. We are also given χII = 11.9 eV and ZIII = 1. With this, we can write the Saha equation
for the ratio of doubly-ionized calcium to singly-ionized calcium:

NIII

NII
=

2kTZIII

PeZII

(
2πmekT

h2

)3/2

e−χII/kT = 0.002.

Very little calcium is doubly ionized in the Sun’s photosphere; instead, the calcium is almost all in the
singly-ionized state—Example 8.1.5 shows that the ratio of singly-ionized calcium to neutral calcium
is very high, and that almost all of the singly-ionized calcium is in the ground state. This means that
almost all of the calcium in the Sun’s photosphere can contribute to the formation of the H and K
lines.

• Q8.14

The Saha equation is

Ni+1

Ni
=

2Zi+1

neZi

(
2πmekT

h2

)3/2

e−χi/kT .

We can see that the ratio Ni+1/Ni increases as the temperature T increases, and that it decreases as
the electron density ne increases. If we consider a main-sequence star and a giant star of the same
spectral type, the fact that they have the same spectral type means that they should have (nearly) the
same ratio Ni+1/Ni for all species so that they form the spectral lines with the same relative strengths.
The fact that the giant star has a lower atmospheric density means that it has a lower value of ne than
the main-sequence star, so in order to maintain the same value of Ni+1/Ni as the main-sequence star
the giant star must also have a lower value of T than the main-sequence star.

• Q8.16

Fomalhaut has V = 1.19; from the H-R diagram, it also has MV ≈ 2. We can solve for the distance to

Fomalhaut using V −MV = 5 log10

(
d

10 pc

)
, which gives d ≈ 7 pc.
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