
Homework Assignment 5 — Solutions

• Q7.1

Recall from the definition of the center of mass that m1m1r1 = −m2r2, where r1 and r2 are measured
from the center of mass. This gives us |r2| = m1

m2
|r1|; as a result, when star 1 is at its furthest distance

from the center of mass, star 2 is also at its furthest distance from the center of mass. Remember that
the furthest distance from focus 1 to a point on an ellipse occurs when an object is on its major axis
near focus 2, at which point its distance from focus 1 is a+ae, where a and e are the semimajor axis and
eccentricity of the ellipse; in addition, the center of mass is a shared focus of the two elliptical orbits,
which tells us that star 1 is at a distance a1(1 + e) from the center of mass when star 2 is at a distance
a2(1+e) from the center of mass (note that we have assumed here that both stars orbit in ellipses with
the same eccentricity; it’s true, and if we wanted to prove it we could use our expressions for the stars’
positions relative to the center of mass). At this moment, since the stars are always on opposite sides
of the center of mass, we have r1 = −a1n̂ and r2 = a2n̂, where n̂ is a unit vector that points from the
center of mass towards the apoastron of star 1. Thus the corresponding position of the reduced mass
in the associated one-body problem is r = r2 − r1 = (a1 + a2)(1 + e)n̂. This is the maximum distance
of the reduced mass from the origin in the associated one-body problem, because it is the maximum
value of r (the maximum separation between stars 1 and 2). The distance is thus equal to a(1 + e),
where a is the semimajor axis of the reduced mass’s orbit. Setting a(1 + e) = (a1 + a2)(1 + e) gives
a = a1 + a2.

• Q7.3

(a). From Fig. 7.8, the stars will just eclipse one another when the projection of their separation on
the plane of the sky, a cos i, equals the sum of their radii r1 + r2. Solving for the inclination,

i = cos−1

(
r1 + r2

a

)
.

(b). For a = 2 AU = 430 R�, r1 = 10 R� and r2 = 1R�, the above expression gives i = 1.55 rad =
88.5◦.

• Q7.4

(a). The semimajor axis of the reduced-mass orbit in AU is given by

a = θd

where θ is the true angular extent of the semimajor axis in arcseconds, and d is the distance in
parsecs. Given that d = 1/p, where p is the parallax in arcseconds, we have

a = θ/p.

For Sirius, θ = 7.61′′ and p = 0.379′′, meaning that a = 20.1 AU.
From eqn. (2.37) of Ostlie & Carroll, we can write the general form of Kepler’s third law as

P 2 = a3/M

where P is the orbital period of the system in years, a is the semimajor axis of the reduced-mass
orbit in AU, and M is the total mass of the system in solar units. Plugging in the value of a
derived above, together with the measured period P = 49.94 yr, gives a total mass M = 3.25 M�.
To find the individual masses, we use the ratio of distances from the center of mass aA/aB =
mB/mA = 0.466. This means that the total mass M = mA +mB = 1.466mA = 3.25 M�, so that
mA = 2.22 M� and mB = 1.03 M�.
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(b). The absolute bolometric magnitudes of Sirius A and B are MA = +1.36 and MB = +8.79. The
luminosities of Sirius A and B are related to their absolute bolometric magnitudes by

M −M� = −2.5 log10

(
L

L�

)
.

Plugging in M� = +4.74 gives LA = 22.5L� and LB = 0.0240L�.

(c). Teff,B ≈ 24, 790 K, and LB = 0.0240L� = 9.34 × 1024 W. We have LB = 4πr2
BσT

4
eff,B , which

gives rB = 5.89 × 106 m = 0.00847 r� = 0.925 r⊕. Sirius B has a mass slightly larger than the
Sun, but a radius slightly smaller than the Earth.

• Q7.6

(a). We have

mA

mB
=
vBr
vAr

=
22.4 km/s
5.4 km/s

= 4.2.

(b). Assuming i ≈ 90◦, the sum of the masses is given by

mA+mB =
P

2πG
(vAr + vBr)

3 =
6.31 yr

4.2× 10−10 m3 kg−1 s−2
(5.4 km/s + 22.4 km/s)3 = 1.0×1031 kg = 5.0M�

(c). From (a) and (b), mA/mB = 4.2 and mA + mB = 1.0 × 1031 kg = 5.0M�. Since mA = 4.2mB ,
we have 5.2mB = 5.0M�, or mB = 0.96M�. Then mA = 4.2mB = 4.0M�.

(d). If we assume that the orbits are circular and continue to assume that i ≈ 90◦, then vA = vAr and
vB = vBr. We can assume that star A has larger radius than star B because it is more massive
(this isn’t always true: there are certain kinds of objects, such as white dwarfs and neutron stars,
that have smaller radii for larger masses. If A and B were both white dwarfs, then the more
massive star A would be smaller than star B. However, given the information in the problem, star
A is too massive to be a white dwarf and probably too massive to be a neutron star). So rA > rB ,
which means that the time between first contact and minimum light is the length of time it takes
to travel a distance 2 rB while moving at speed v = vA + vB (the total relative speed of the two
stars). That is,

rB =
v

2
(tb − ta) =

5.4 km/s + 22.4 km/s
2

(0.58 d) = 7.0× 108 m.

Similarly, we have

rA = rB +
v

2
(tc − tb) = 7.0× 108 m +

5.4 km/s + 22.4 km/s
2

(0.64 d) = 1.5× 109 m.

(e). The apparent bolometric magnitudes at maximum, primary minimum and secondary minimum
are mmax = +5.40, mmin,1 = +9.20 and mmin,2 = +5.44. Since the distance to the sys-
tem does not vary between maximum and the minima, we can use the apparent magnitudes
to determine ratios of luminosities at different phases: mmin,1 − mmax = −2.5 log10

(
Lmin,1
Lmax

)
,

mmin,1 − mmin,2 = −2.5 log10

(
Lmin,1
Lmin,2

)
and mmin,2 − mmax = −2.5 log10

(
Lmin,2
Lmax

)
. This gives

Lmin,1/Lmax = 0.030, Lmin,1/Lmin,2 = 0.031, and Lmin,2/Lmax = 0.96. Now we express the lumi-
nosities at various phases in terms of the radii and effective temperatures of the stars (ignoring
effects due to interstellar dust/gas and the detector): at maximum we see all the light from both
stars, so Lmax = πr2

AσT
4
eff,A + πr2

BσT
4
eff,B . We can assume that star A, being more massive than

star B, is also hotter (earlier spectral type)—the masses and sizes of the stars are consistent with
main-sequence stars, so more massive goes with hotter surface temperature. Therefore, at sec-
ondary minimum we see all the light from star A only: Lmin,2 = πr2

AσT
4
eff,A. At primary minimum
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we see all the light from star B plus the light from star A reduced by the amount blocked by the
disk of star B: Lmin,1 = π

(
r2
A − r2

B

)
σT 4

eff,A + πr2
BσT

4
eff,B . The ratio of luminosities at maximum

and secondary minimum is Lmax/Lmin,2 = 1 +
r2BT

4
eff,B

r2
A
T 4

eff,A
; we also know that Lmax/Lmin,2 = 1/0.96,

so
r2BT

4
eff,B

r2
A
T 4

eff,A
= 1/0.96 − 1 = 0.038. Plugging in our values for rA and rB from part (d), we have

T 4
eff,B

T 4
eff,A

= 0.17, so Teff,B
Teff,A

= 0.64.

Note that equation 7.11 in the book is derived for the case where the smaller star is hotter than
the bigger star; in that case, secondary minimum occurs when the small star is in front of the big
star and primary minimum occurs when the small star is completely hidden by the big star. Our
case is the reverse: at secondary minimum the small star is completely hidden by the big star,
and at primary minimum the small star is in front of the big star.

• Q7.7

From Fig. 7.2, the V -band magnitude at maximum is Vmax ≈ 10.04, at primary minimum it is Vmin,1 ≈
10.78, and at secondary minimum it is Vmin,2 ≈ 10.68. This gives luminosity ratios Lmin,1/Lmax =
0.51, Lmin,1/Lmin,2 = 0.91, and Lmin,2/Lmax = 0.55. If we assume the larger star has radius rl and
effective temperature Teff,l, while the smaller star has radius rs and effective temperature Teff,s, then
the luminosity at maximum is Lmax = πr2

l σT
4
eff,l +πr2

sσT
4
eff,s, the luminosity at secondary minimum is

Lmin,2 = πr2
l σT

4
eff,l, and the luminosity at primary minimum is Lmin,1 = π

(
r2
l − r2

s

)
σT 4

eff,l+πr
2
sσT

4
eff,s.

This assumes that the bigger star is also hotter; it looks like both stars in YY Sag are main-sequence
stars, so this assumption should be correct. This gives us

Lmin,2

Lmax
=

πr2
l σT

4
eff,l

πr2
l σT

4
eff,l + πr2

sσT
4
eff,s

= 1−
πr2
sσT

4
eff,s

πr2
l σT

4
eff,l + πr2

sσT
4
eff,s

= 0.55

and

Lmin,1

Lmax
=
π

(
r2
l − r2

s

)
σT 4

eff,l + πr2
sσT

4
eff,s

πr2
l σT

4
eff,l + πr2

sσT
4
eff,s

= 1−
πr2
sσT

4
eff,l

πr2
l σT

4
eff,l + πr2

sσT
4
eff,s

= 0.51.

This gives

πr2
sσT

4
eff,s

πr2
l σT

4
eff,l + πr2

sσT
4
eff,s

= 0.45

and

πr2
sσT

4
eff,l

πr2
l σT

4
eff,l + πr2

sσT
4
eff,s

= 0.49.

Taking the ratio of these two expressions gives

πr2
sσT

4
eff,s

πr2
sσT

4
eff,l

=
T 4

eff,s

T 4
eff,l

=
0.45
0.49

,

so that Teff,s/Teff,l = 0.98.

If instead we assumed that the smaller star is hotter, we would get Teff,s/Teff,l = 1.02. This would imply
that the stars are not both main-sequence stars, since main-sequence stars increase in temperature and
radius with mass, which means that larger main-sequence stars are also hotter.
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• Q7.13

The observed luminosity from the Sun when it is not eclipsed is πr2
�σT

4
eff,�. When Jupiter passes in

front of the Sun, it blocks an area of size πr2
J, and the observed luminosity decreases to π

(
r2
� − r2

J

)
σT 4

eff,�.
The fractional decrease in the observed brightness is

π
(
r2
� − r2

J

)
σT 4

eff,�

πr2
�σT

4
eff,�

− 1 = − r
2
J

r2
�
≈ −0.01.

The eclipse only reduces the brightness by about 1%.

• Q7.15

(a). See plots at the end of the solutions.

(b). From section 7.3, we know that m1
m2

= v2r

v1r
and m1 +m2 = P

2πG
(v1r+v2r)3

sin3 i
. Since we know m1, m2,

P , and i we can solve for the amplitudes of v1r and v2r (we already know that v1r and v2r should
vary sinusoidally with time, which is borne out by the radial velocity curves in the e = 0 plot).
The result is that v1r = 13000 m/s and v2r = 3300 m/s, which agrees with the amplitudes of the
sinusoidal velocity curves in the e = 0 plot.

(c). As the eccentricity increases, the shape of the velocity curves goes from sinusoidal to a flattened
“top-hat” shaped curve; we can estimate the system eccentricity by examining the shape of the
velocity curves.

• Q7.18

See plot at the end of the solutions.
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Figure 1: Radial velocity curves (solid – primary; dashed – secondary) for the e = 0 case in Q7.15(a).
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Figure 2: Radial velocity curves (solid – primary; dashed – secondary) for the e = 0.2 case in Q7.15(a).
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Figure 3: Radial velocity curves (solid – primary; dashed – secondary) for the e = 0.4 case in Q7.15(a).
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Figure 4: Radial velocity curves (solid – primary; dashed – secondary) for the e = 0.5 case in Q7.15(a).
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Figure 5: Light curve for OGLE-TR-56b in Q7.18.
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