
Homework Assignment 4 — Solutions
• Extra 1
In general, we have

νobs = νrest

√
1− u2/c2

1 + (u/c) cos θ = νrest

√
1− u2/c2

1 + (vr/c)
(1)

For pure radial motion, θ = 0◦ or 180◦, and u = vr or u = −vr. In this case, we have

νobs = νrest

√
1− v2

r/c
2

1 + vr/c
.

Factoring 1− v2
r/c

2 = (1 + vr/c)(1− vr/c) and plugging in, we have

νobs = νrest

√
1− vr/c
1 + vr/c

.

Using the Taylor series approximation (1 + x)−1 ≈ 1− x on the denominator (inside the square root),
we have

νobs ≈ νrest
√

(1− vr/c)(1− vr/c) = νrest(1− vr/c).

Switching from frequency to wavelength, we have

c

λobs
≈ c

λrest
(1− vr/c),

or

λobs ≈ λrest(1− vr/c)−1.

Now, using the Taylor series approximation (1− x)−1 ≈ 1 + x, we have

λobs ≈ λrest(1 + vr/c).

Subtracting λrest from both sides, we have

λobs − λrest = ∆λ ≈ λrest
vr
c
.

Dividing through by λrest, we get our result:

∆λ
λrest

= z ≈ vr
c
.

The Taylor series approximations we used are all for x� 1, so in our case they only work if vr � c.
For non-radial motion, we go back to equation 1. For a star moving with vr

c = 10−4 we can use our
approximation (1 + x)−1 ≈ 1− x on the denominator to get

νobs = νrest

√
1− u2/c2

1 + (vr/c)
≈ νrest

(√
1− u2/c2

)
(1− (vr/c))
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If u� c (we’ll check this assumption later*) then we can approximate the square root using
√

(1− x) ≈
1− x

2 :

νobs ≈ νrest

(
1− u2

2c2

)
(1− (vr/c)) .

Switching from frequency to wavelength, we have

λobs ≈ λrest

(
1− u2

2c2

)−1

(1− (vr/c))−1
,

and using (1− x)−1 ≈ 1 + x twice we get

λobs ≈ λrest

(
1 + u2

2c2

)
(1 + (vr/c)) = λrest

(
1 + vr

c
+ u2

2c2 + vru
2

2c3

)
.

This gives

∆λ
λrest

= z ≈
(
vr
c

+ u2

2c2 + vru
2

2c3

)
. (2)

We can see that our previous approximation z ≈ vr/c is good if vr/c� u2

2c2 —in that case, we can drop
the second and third terms inside the parentheses on the right hand side of equation 2. Conversely,
our first-order approximation breaks down if u2

2c2 becomes comparable to vr/c. Using vr = u cos θ, we
can see that the approximation breaks down if |cos θ| . u/2c; since u = vr/cos θ this happens when
cos θ . vr

2 c cos θ , or when cos2 θ . vr/2c. For a star with vr
c = 10−4, the first-order approximation

breaks down when cos2 θ . 5 × 10−5, which happens for angles θ between 89.6◦ and 90.4◦—in other
words, the direction of motion has to be within about 0.4◦ of exactly perpendicular to the line of sight
for the first-order approximation to break down. Since stellar motions are generally oriented randomly
with respect to the line of sight, we can see that the first-order approximation is almost always good,
as long as vr � c.
* Checking the assumption that u � c: we have u = vr/cos θ and vr/c = 10−4, so u � c as long as
cos θ � 10−4. This is automatically true if cos2 θ > 5 × 10−5, so if our first-order approximation is
good at all then the assumption u� c is also good and the analysis presented above works fine. More
generally, for other values of vr/c, as long as vr/c� 1 the assumption that u/c� 1 doesn’t affect the
analysis of what (small) range of angles θ gives a break down of the first-order approximation.

• Q4.8
λrest = 121.6 nm, λobs = 656.8 nm. We have ∆λ = λobs−λrest = 535.2 nm, and z = ∆λ/λrest = 4.401.
Since z 6� 1, we can’t use the first-order approximation z ≈ vr

c (if we did, we’d get a faster-than-light
velocity for the quasar, which, despite recent unexplained neutrino experiment results, is a no-no).
Instead, we need to use the equation

νobs = νrest

√
1− vr/c
1 + vr/c

.

We are justified in using this radial velocity expression for the relativistic Doppler shift because we
expect that the quasar’s motion is almost exactly radial, with negligible transverse motion—the radial
motion comes from the cosmic expansion, and should be much larger than the peculiar (or transverse)
motion of the quasar. Switching from frequency to wavelength, we have

λobs = λrest

√
1 + vr/c

1− vr/c
,
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or

z =

√
1 + vr/c

1− vr/c
− 1.

Solving for vr/c gives

vr
c

= (z + 1)2 − 1
(z + 1)2 + 1 .

Plugging in z = 4.401 gives vr = 0.93 c.

• Q5.1
Barnard’s star has µ = 10.3577"/yr, p = 0.54901", and λHα,obs = 656.034 nm.

(a). λHα,rest = 656.469 nm, so z = λHα,obs/λHα,rest − 1 = −6.626 × 10−4. Since |z| � 1, we can use
our simple first-order approximation z = vr/c, giving vr = −1.988× 105 m/s.

(b). The distance to Barnard’s star is d = 1/0.54901 pc = 1.821 pc, and its transverse velocity is
vt = µd = (10.3577"/yr)(1.821 pc) = (1.591× 10−12 rad/s)(5.619× 1016 m) = 8.94× 104 m/s.

(c). The total speed of Barnard’s star through space is vBarnard′sstar = (v2
r + v2

t )1/2 = 2.18× 105 m/s.

• Q5.2
We have λ1 = 588.997 nm and λ2 = 589.594 nm.

(a). The grating has 300 lines/mm, so the distance between adjacent lines is d = 1/300 mm =
0.0003333 cm. The angles of the two lines in the second-order spectrum are given by sin θ1 = 2λ1/d
and sin θ2 = 2λ2/d, or θ1 = 0.003538 rad = 0.2027◦ and θ2 = 0.003534 rad = 0.2025◦. The differ-
ence in the angles is ∆θ = θ1 − θ2 = 4× 10−6 rad = 0.0002◦.

(b). In order to resolve the lines, we must have λ
nN ≤ ∆λ. We have ∆λ = 0.597 nm and λ = 588.997

nm (or λ = 589.594 nm, it doesn’t really matter). If we consider the second-order spectrum
(n = 2), then in order to resolve the lines we must have 1

N ≤
n∆λ
λ = 0.00203. Flipping this gives

N ≥ 493.3; since we cannot illuminate a fractional number of lines, we must have N = 494 (or
more).

• Q5.11
The limit wavelengths for the Lyman, Balmer and Paschen series can be calculated from

1
λlimit

= RH
1
m2 ,

where m = 1, 2, 3. This gives λLy,limit = 91.2 nm, λBa,limit = 365 nm, and λPa,limit = 821 nm. These
values agree closely with the values reported in Table 5.2 of the text—note that the values reported
for the Balmer and Paschen limits are the wavelength measured in air, which is very slightly different
from the vacuum wavelength. The Lyman and Balmer limits are in the ultraviolet, and the Paschen
limit is in the infrared.

• Q6.2

(a). The figure shows a third (green) ray that goes from the tip of the arrow through the focal point
on the near side of the lens; this ray bends through the lens so that it leaves the lens traveling
parallel to the optical axis, and it pass through the tip of the image arrow, just as the blue and
red rays do. We can derive the lens equation just using the first two rays, as follows: we can see
that triangle OPC is similar to triangle IQC, which gives us the relation ho/p = hi/q. We can
also see that triangle ACF is similar to triangle IQF, so that ho/f = hi/(q− f). We can combine
the two relations to give hip/fq = hi/(q − f). Dividing through by hi gives p/fq = 1/(q − f);
multiplying through by (q − f)/p gives (q − f)/fq = 1/p, or 1/f − 1/q = 1/p, which finally gives
the desired result: 1/f = 1/p+ 1/q.
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(b). When p � f , the lens equation can be approximated as 1/f ≈ 1/q, which shows that the image
is located at a distance q ≈ f , meaning that the image lies on the focal plane.

• Q6.8

(a). D = 20 cm, λ = 550 nm. The Rayleigh criterion gives a diffraction-limited resolution of ∆θ =
1.22λ/D = 3.36× 10−6 rad = 1.92× 10−4 ◦ = 0.692".

(b). From Appendix C, the distance to the Moon is d = 384, 000 km = 3.84 × 108 m. A crater that
subtends an angle ∆θ = 3.36×10−6 rad at that distance will have diameter Dcrater = d∆θ = 1290
m = 1.29 km.

(c). The telescope’s theoretical diffraction limit for angular resolution will probably not be achieved:
seeing typically limits the angular resolution to 1" or worse in most locations, making the theo-
retical diffraction limit of 0.692" irrelevant.

• Q6.15
SIM PlanetQuest will have angular resolution ∆θ . 0.000004" down to V = 20.

(a). At a distance d = 10 km, SIM can detect differences ∆l in the length of a grass blade as small as
∆l = d∆θ = 2× 10−7 m, or 200 nm. If grass grows 2 cm/week, SIM can measure growth over a
period as short as ∆t = 2× 10−7 m/(0.02 m/week) = 10−5 weeks = 6 seconds.

(b). The maximum distance in parsecs that SIM can measure using trigonometric parallax is one over
its angular resolution in arcseconds: dmax = (1/0.000004) pc = 250 kpc, or about 30 times the
distance from the Sun to the center of the Milky Way.

(c). The Sun has absolute magnitude M� = +4.77. If we imagine looking at the Sun from a distance
of 250 kpc, its apparent magnitude would be m�,250 kpc = M� + 5 log10

(
250 kpc
10 pc

)
= +26.8.

(d). Sirius has absolute magnitude MSirius = −5.14. Sirius would have an apparent magnitude
mSirius = 20 at a distance d such thatmSirius−MSirius = 5 log10

(
d

10 pc

)
. Solving gives d = 1.1×106

pc.
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