
Homework Assignment 2 — Solutions

• Q2.1

Transforming from a polar coordinate system (r, θ) with its origin at one focus to a rectangular coor-
dinate system with its origin at the center of the ellipse, we have:

x = a e+ r cos θ, y = r sin θ

where a is the ellipse’s semimajor axis and e is its eccentricity. Note that r is a function of θ (so, for
instance, the maximum value of y doesn’t occur right at θ = π/2 radians)–specifically,

r(θ) =
a(1− e2)

1 + e cos θ
.

Plugging in our expression for r(θ) gives

x = a e+
a(1− e2)

1 + e cos θ
cos θ

and

y =
a(1− e2)

1 + e cos θ
sin θ.

Using b = a
√

(1− e2), we have

x

a
= e+

(1− e2)
1 + e cos θ

cos θ

and

y

b
=

√
(1− e2)

1 + e cos θ
sin θ,

so

(x
a

)2

+
(y
b

)2

= e2 + 2 e
(1− e2)

1 + e cos θ
cos θ +

(1− e2)2

(1 + e cos θ)2
cos2 θ +

(1− e2)
(1 + e cos θ)2

sin2 θ

=
1

(1 + e cos θ)2
(
e2 (1 + e cos θ)2 + 2 e (1− e2) (1 + e cos θ) cos θ + (1− e2)2 cos2 θ + (1− e2) sin2 θ

)
=

1
(1 + e cos θ)2

(
e2 + 2 e3 cos θ + e4 cos2 θ + 2 e cos θ + 2 e2 cos2 θ − 2 e3 cos θ − 2 e4 cos2 θ+

cos2 θ − 2 e2 cos2 θ + e4 cos2 θ + sin2 θ − e2 sin2 θ
)

=
1

(1 + e cos θ)2
(
e4
[
cos2 θ − 2 cos2 θ + cos2 θ

]
+ e3 [2 cos θ − 2 cos θ] +

e2
[
1 + 2 cos2 θ − 2 cos2 θ − sin2 θ

]
+ 2 e cos θ + cos2 θ + sin2 θ

)
=

1
(1 + e cos θ)2

(
e2
[
1− sin2 θ

]
+ 2 e cos θ + 1

)
=

1
(1 + e cos θ)2

(
e2 cos2 θ + 2 e cos θ + 1

)
=

(1 + e cos θ)2

(1 + e cos θ)2

= 1,

which is the desired result.
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• Q2.2

In Cartesian coordinates, the equation of an ellipse with its semimajor axis aligned with the x-axis is(x
a

)2

+
(y
b

)2

= 1

The area of the ellipse is

A =
∫ x=+a

x=−a

∫ ymax(x)

ymin(x)

dx dy,

where ymin(x) and ymax(x) are the minimum and maximum values of y at a given x. The points
(x, ymin(x)) and (x, ymax(x)) lie on the circumference of the ellipse. Intuitively, the double integral
represents adding up the areas of thin vertical strips stretching from the bottom of the ellipse to its
top, adding up strips from the left end of the ellipse (x = −a) to the right end (x = +a). Using the
equation of the ellipse we have

ymin(x) = −b
(

1− x2

a2

)1/2

, ymax(x) = +b
(

1− x2

a2

)1/2

,

so

A =
∫ x=+a

x=−a

∫ +b
(
1− x2

a2

)1/2

−b
(
1− x2

a2

)1/2
dx dy

=
∫ x=+a

x=−a
2 b
(

1− x2

a2

)1/2

dx.

Let sinu = x
a . Then cos u du = 1

a dx and the integral becomes

A = 2 b
∫ u=+π/2

u=−π/2

(
1− sin2 u

)1/2
a cos u du

= 2 a b
∫ π/2

−π/2
cos2 u du

= 2 a b
∫ π/2

−π/2

[
1
2

+
1
2

cos (2u)
]
du

= 2 a b
[
u

2
+

1
4

sin (2u)
]π/2
−π/2

= 2 a b
[
π

4
−
(
−π

4

)
+

1
4

sinπ − 1
4

sin (−π)
]

= 2 a b
[π

2

]
= π a b,

which is the desired result.

• Extra 1

From problem 2.2, we know that the area of an ellipse is A = π a b. Using our old polar coordinate
system (r, θ) with its origin at one focus, we can express the area of the ellipse as
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A =
∫ θ=2π

θ=0

1
2
r2 (θ) dθ.

We also know that

r(θ) =
a(1− e2)

1 + e cos θ

and

b = a
√

(1− e2),

so we have

A =
1
2
a2
(
1− e2

)2 ∫ θ=2π

θ=0

dθ

(1 + e cos θ)2
= π a b = π a2

(
1− e2

)1/2
.

Dividing through, we have ∫ 2π

0

dθ

(1 + e cos θ)2
= 2π

(
1− e2

)−3/2
.

• Q2.8

(a). The Moon has semimajor axis aMoon = 3.8× 108 m and an orbital period PMoon = 27 days. The
Hubble Space Telescope has aHST = 610 km = 6.1× 105 m. Using Kepler’s third law,(

PHST

PMoon

)2

=
(
aHST

aMoon

)3

.

Solving gives PHST = 2.5 minutes.

(b). A geosynchronous orbit has period Pgeo = 1 day; using Kepler’s third law again, we have(
Pgeo

PMoon

)2

=
(
ageo

aMoon

)3

,

which gives ageo = 4.2× 107 m.

(c). A geosynchronous orbit that maintains a satellite always above a fixed point on the Earth’s surface
(sometimes called a geostationary orbit) is only possible for an orbit above the Earth’s equator*.
An orbit that passes above a point north of the equator has an orbital plane that is tilted with
respect to the equator, so the orbit passes above points north and south of the equator and a
satellite in such an orbit can’t remain always above a fixed point on the Earth’s surface.
* Actually, even an orbit above the Earth’s equator can’t be a perfect geostationary orbit because
the satellite’s motion is perturbed by the gravitational pull of the Moon, Sun, other planets, etc.
A satellite that wants to remain always above a fixed point on Earth must periodically burn some
fuel to correct its orbit.

• Q2.12

(a). See Fig. 1

(b). The best-fit line has equation log10

(
P

days

)
= −3.7 + 1.5 log10

(
a

103km

)
, so it has slope 1.5.
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(c). The best-fit line is log10

(
P

days

)
= −3.7+1.5 log10

(
a

103km

)
, which implies

(
P

days

)
= 10−3.7

(
a

103km

)1.5,

or
(

P
days

)2

= 10−7.4
(

a
103km

)3. Kepler’s third law states that

P 2 =
4π2

G (m1 +m2)
a3.

Since the masses of the Galilean moons are all much less than the mass of Jupiter, we can
approximate m1 +m2 ≈MJup. We have

P 2 = 10−7.4 days2

(103km)3
a3 ≈ 4π2

GMJup
a3,

or

10−7.4 days2

(103km)3
≈ 4π2

GMJup
.

Solving gives MJup ≈ 2× 1027 kg.

• Q2.14

PHalley = 76 yr and eHalley = 0.9673.

(a). Using Kepler’s third law to compare Halley’s comet and the Earth gives(
PHalley

1 year

)2

= 762 =
(aHalley

1 AU

)3

,

which gives aHalley = 18 AU = 2.7× 1012 m.

(b). Kepler’s third law for Halley’s comet is

P 2
Halley =

4π2

G (M� +MHalley)
a3
Halley ≈

4π2

GM�
a3
Halley.

Solving for M� gives

M� =
4π2

GP 2
Halley

a3
Halley = 2× 1030 kg.

(c). The perihelion distance is a− ae = 0.59 AU = 8.8× 1010 m.
The aphelion distance is a+ ae = 35 AU = 5.3× 1012 m.

(d). In general, the orbital velocity satisfies

v2 = GM�

(
2
r
− 1
a

)
.

Plugging in our values for a from part a and for rperihelion and raphelion from part c gives vperihelion =
1.7×106 m/s and vaphelion = 2.9×104 m/s. The radial distance on the semiminor axis of the orbit

is rsemimajor =
(
b2 + [a e]2

)1/2

=
(
a2
[
1− e2

]
+ a2 e2

)1/2 =
(
a2
)1/2 = a, so v2

semiminor = GM�
a ,

which gives vsemiminor = 2.2× 105 m/s. It turns out the orbital velocity on the semiminor axis is
the geometric mean of the orbital velocities at perihelion and aphelion.
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• Q2.15

Using Prof. Townsend’s online interface for Orbit, I find that Halley’s comet is 1 AU away from the
principal focus at a time 0.107 years after perihelion. Note that Orbit has bad numerical resolution
properties; in order to get the answer you need to use a large number of timesteps. It’s a good idea
to check whether you are using enough timesteps by doing a test run with twice as many timesteps; if
you get the same answer after doubling the number of timesteps you should be in good shape.

• Extra 2

We begin with the radial equation of motion

µ
(
r̈ − rθ̇2

)
= −GM µ

r2
, (1)

and conservation of angular momentum

L = µ r2 θ̇, (2)

which can be rearranged to read

θ̇ =
L

µ r2
. (3)

Plugging this into equation 1 gives

µ

(
r̈ − r

[
L

µ r2

]2)
= µ

(
r̈ − L2

µ2 r3

)
= −GM µ

r2
. (4)

Next, we get rid of time derivatives in the radial equation of motion using the identity

d

dt
= θ̇

d

dθ
=

L

µ r2
d

dθ
, (5)

where we used equation 3 in the last step.

Substituting into equation 4 gives

µ

(
L

µ r2
d

dθ

[
L

µ r2
dr

dθ

]
− L2

µ2 r3

)
= −GM µ

r2
. (6)

Now we make the substitution u = 1
r , so that dr = − 1

u2 du. Plugging into equation 6 gives

µ

(
Lu2

µ

d

dθ

[
−Lu

2

µ

1
u2

du

dθ

]
− L2 u3

µ2

)
= −L

2 u2

µ

d2u

dθ2
− L2 u3

µ
= −GM µu2. (7)

Multiplying through by − µ
L2 u2 , we have

d2u

dθ2
+ u =

GM µ2

L2
. (8)

This can be recognized as a second-order, linear, inhomogeneous differential equation. The solution is
a combination of the solution to the equivalent homogeneous system

d2u

dθ2
+ u = 0 −→ u(θ) = A cos θ (9)
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(where A is a constant of integration, and we’ve made the choice that u must be extremal at θ = 0, π),
together with the particular solution

u(θ) =
GM µ2

L2
. (10)

Combining the homogeneous and particular solutions, we find

u(θ) =
GM µ2

L2
+A cos θ; (11)

therfore, in terms of the radius,

r(θ) ≡ 1
u

=
L2

GM µ2(1 + e cos θ)
. (12)

where we have made the association e = AL2/GM µ2. This is the desired result.
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Figure 1: Graph for Q2.12
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