
Assignment 5 — Solutions [Revision : 1.3]

Q10.1 The equation of hydrostatic equilibrium is

dP
dr

= −gρ.

Recalling that the definition of optical depth is

dτ = −κ̄ρ dr,

we can rewrite the HE equation as

−κ̄ρdP
dτ

= −gρ.

Rearranging,
dP
dτ

=
g

κ̄

which is the desired result.

Q10.3 If the Sun is composed completely of hydrogen atoms, then the number of atoms will be
given by

N =
M�
mH

.

Plugging in the numbers, N = 1.2× 1057.

If 10 eV is released by every atom, the total amount of energy liberated over the Sun’s lifetime
would be

E = N · 10 eV = 1.9× 1039 J

The lifetime of the Sun, at its present luminosity, would therefore be

τ =
E

L�
= 5.0× 1012 s = 158, 000 yr

This is much shorter than the age of the Earth (as determined from geology and paleontology),
and therefore it is not possible that the Sun’s energy is entirely chemical.

Q10.4 (a). The height of the Coulomb barrier between two protons is

U ≈ 1
4πε0

e2

r

where r is their separation. Assuming r ≈ 10−15 m, we find U ≈ 1.44 MeV ≈ 2.31 ×
10−13 J.
If this barrier can be penetrated by protons with a velocity v = 10 vrms, where vrms is the
root-mean-square velocity of the Maxwell-Boltzmann distribution, then these penetrating
photons must have a kinetic energy

E ≥ 102 · 3kT
2
.

(The fractional term on the right-hand side is the kinetic energy at v = vrms). Equating
this with the barrier height derived above,

100
3kT

2
≥ 2.31× 10−13 J.

Solving for the temperature, we obtain T = 1.11× 108 K. This is approaching a factor of
ten larger than the actual central temperature of the Sun, Tc ≈ 1.6× 107 K.



(b). With a little algebra, eqn. (8.1) of O&C can be written in the form

nv dv = n

(
3

2πvrms

)3/2

e−3v2/2vrms4π
(

v

vrms

)2

dv,

where vrms ≡
√

3kT/m is the RMS velocity. Hence, the ratio between the number of
particles per unit velocity interval at v = vrms and v = 10 vrms is

n10vrms

nvrms

=
100e−150

e−1.5
= 3.22× 10−63

(c). From the previous question, N ≈ 1.2 × 1057. Given the ratio calculated above, we can
see that, on average, not even a single proton will be moving with a velocity of ten times
vrms! Therefore, in the absence of tunneling there is no way that v = 10vrms protons can
account for the Sun’s luminosity.

Q10.5 The pressure integral is

P =
1
3

∫ ∞
0

mnvv
2 dv

(cf. O&C, eqn. 10.9). Substituting in the Maxwell-Boltzmann velocity distribution given by
eqn. (8.1) of O&C, we have

P =
1
3

∫ ∞
0

mn
( m

2πkT

)3/2

e−mv
2/2kT 4πv4 dv.

Making a change of variables to x =
√
m/2kTv, this can be rewritten as

P =
1
3
mn

( m

2πkT

)3/2

4π
(

2kT
m

)5/2 ∫ ∞
0

x4e−x
2

dx =
8

3
√
π
nkT

∫ ∞
0

x4e−x
2

dx

The definite integral evaluates (e.g., using Mathematica) to 3
√
π/8. Hence, we obtain

P = nkT,

which is the ideal gas law.

Q10.17 To prove that the n = 0 polytrope has the solution

D0(ξ) = 1− ξ2

6
,

we can substitute it into the Lane-Emden equation:

1
ξ2

d
dξ

[
ξ2

dDn

dξ

]
= −Dn

n.

The left-hand side evaluates to
1
ξ2

d
dξ

[
ξ2

dDn

dξ

]
=

1
ξ2

d
dξ

[
ξ2 · −ξ

3

]
= −1

The right-hand side trivially evaluates to −1 also (since x0 = 1 for any x 6= 0). Hence, the
solution above satisfies the Lane-Emden equation.
The remaining step is to verify that the solution also satisfies the boundary conditions. At
ξ = 0, we have

D0(0) = 1

and
D′0(0) = 0,

which does indeed satisfy the conditions Dn(0) = 1 and D′n(0) = 0. Moreover, D0(ξ) = 0 at
ξ = ξ1 =

√
6.



Q10.18 The density of a polytrope is given by

ρ = ρcD
n
n

(cf. p. 336 of O&C), where ρc is the central density and Dn the appropriate solution of the
Lane-Emden equation. With n = 0, this becomes

ρ = ρc,

and so the n = 0 polytrope can be recognized as having a uniform density structure. This
polytrope is often referred to as the ‘homogeneous, incompressible’ case.

Q10.20 (a). See Fig. 1 for the graph.

(b). The curves indicate that the density is more centrally concentrated for increasing poly-
tropic index. This statement can be placed on a more-rigorous footing by noting that the
mean density of a polytrope is

ρ̄ =
3M

4πR3
= −3ρcξ

−1
1

dDn

dξ

∣∣∣∣
ξ1

(using expressions given for the mass and radius by O&C). Hence, the ratio between the
central density and ρ̄ (which measures the degree of central concentration) is

ρc

ρ̄
=

1
3

[
ξ−1
1 · − dDn

dξ

∣∣∣∣
ξ1

]−1

Consulting any table of polytropes (or using Poly-Web) will show that both terms in
the brackets are monotonically decreasing functions of n; thus, the degree of central
concentration will be a monotonically increasing function of n.

(c). An adiabatically convective model has n = 1.5, whereas a model in radiative equilibrium
has n = 3. Therefore, the latter should be more centrally concentrated than the former.

(d). This question is too vague to answer.

EZ-Web Polytrope Question If the Sun’s structure is described by a polytrope, then the pres-
sure and density should be related by

P = Kρ(n+1)/n

for fixed K and n. Taking the logarithm of both sides gives

log10 P =
n+ 1
n

log10 ρ+ log10K;

thus, a plot of the solar structure in the log10 P − log10 ρ plane can be used to determine the
polytropic index.

Fig. 2 shows such a plot, for an EZ-Web model of the present-day Sun. The best fit line to the
pressure/density data has a slope 1.41; hence, the polytropic index for the Sun is estimated
from (n+ 1)/n ≈ 1.41, as n ≈ 2.44.



Figure 1: The scaled density ρ/ρc plotted as a function of scaled radius r/λn (= ξ) for polytropes
having indices n = 0 (solid), n = 1 (dotted) and n = 5 (dashed). Note that the n = 0 curve
terminates at r/λn =

√
6, because this point corresponds to the stellar surface.



Figure 2: An EZ-Web model for the present-day Sun, plotted in the logarithmic pressure-density
plane (solid). The dotted line shows the best fit to the EZ-Web data; it has a slope 1.41 and an
intercept 9.17.


