
Assignment 2 — Solutions [Revision : 1.3]

Q2.8 (a). The general form of Kepler’s third law is

P 2 =
4π2

G(m1 +m2)
a3.

Assuming that the mass of Hubble is negligible compared to that of the Earth, this can
be approximeted by

P 2 ≈ 4π2

GM⊕
a3

Plugging in the orbital radius a = R� + 610 km = 6990 km and the Earth’s mass M⊕ =
5.96×1024 kg gives an orbital period of P = 5820 s = 97 min. (Observing time on Hubble
is always scheduled in integer multiples of this 97-minute orbital period.)

(b). In a geosynchronous orbit, the orbital period is exactly equal to one day. Using the
approximate form of Kepler’s third law above, for P = 1 d the orbital radius is a =
4.22× 107 m. Thus, the altitude of the orbit is a−R⊕ = 3.58× 107 m = 35, 800 km.

(c). No, it is not possible. Only geosynchronous orbits that lie in the Earth’s equatorial plane
will remain parked over a specific location; geosynchronous orbits in other planes (which
must be centered on the Earth) will remain at the same terrestrial longitude, but their
latitude will wander north and south over one day.

Q2.12 (a). See Fig. 1

(b). The slope of the best-fit line is 1.50 = 3/2.

(c). Assuming that the masses of the Galilean moons are negligible, the general form of
Kepler’s third law applied to the Jupiter system is

P 2 ≈ 4π2

GMX
a3.

Taking the logarithm of both sides,

2 logP ≈ log 4 + 2 log π − logG− logMX + 3 log a.

Rearranging,

logP ≈ 1
2
(
log 4 + 2 log π − logG− logMX

)
+

3
2

log a.

The first quantity on the right-hand side must equal the intercept of the logP vs log a
line, which is -7.75. Solving for Jupiter’s mass then gives MX = 1.88× 1027 kg.

Q2.14 (a). For any general system, the period and eccentricity are insufficient to calculate the
semi-major axis. However, in the special case of the solar-system, we can use Kepler’s
third law in its original form:

(P/yr)2 = (a/au)3.

Plugging in the period of 76 yr gives a semi-major axis of a = 17.9 AU = 2.68× 1012 m.

(b). Neglecting the masses of the planets, comets and asteroids, the general form of Kepler’s
third law for the solar system is

P 2 =
4π2

GM�
a3

Using the values of P and a from Halley’s comet, the mass of the Sun is calculated as
M� = 1.99× 1030 kg.



Figure 1: logP vs. log a for the Galilean moons. The solid line is the least-squares best-fit line; it
has a slope of 1.50 and an intercept of -7.75.



(c). At perhelion rp = (1−e)a = 8.78×1010 m, while at aphelion ra = (1+e)a = 5.28×1012 m.
Note that we have neglected the fact that the Sun isn’t at the center-of-mass of the solar
system; this turns out to be only a 1% correction.

(d). The orbital speed can be calculated from conservation of energy. The total energy of the
comet is

E =
1
2
mv2 − GM�m

r

(kinetic plus potential). From equation 2.35 of Ostlie & Carroll, the total energy is also
given by

E = −GM�m
2a

Equating the two values and dividing through by the comet mass m,

1
2
v2 − GM�

r
= −GM�

2a
.

Solving for the speed,

v =

√
GM�

(
2
r
− 1
a

)
Plugging in the above values for the semi-major axis and perihelion/aphelion radii, we
find that vp = 5.45×104 ms−1 = 54.5 kms−1 and va = 9.07×102 ms−1 = 0.907 kms−1. On
the semi-minor axis, the radius is rs = a = 2.68× 1012 m, and so vs = 7.04× 103 ms−1 =
7.04 kms−1.

(e). The ratio of kinetic energies is v2
p/v

2
a = 3610.

Q5.1 (a). The radial velocity can be determined from the Doppler shift formula:

vr
c

=
∆λ
λ

Measured in air, the rest wavelength of Hα is 656.281 nm; hence, for Barnard’s star ∆λ =
656.034 − 656.281 = −0.247 nm. Solving for the radial velocity, vr = −1.13 × 105 ms−1

(the negative sign indicates that the star is approaching us).

(b). The transverse velocity is given by
vθ = µd

where µ is the proper motion and d is the distance. With µ = 10.3577 ′′yr−1 and d =
1/0.54901′′ = 1.82 pc, we find that vθ = 18.9 AUyr−1. In standard units, this is vθ =
8.94× 104 ms−1.

(c). The speed is given by

v =
√
v2
r + v2

θ ;

plugging in the numbers, we find v = 1.44× 105 ms−1 = 144 kms−1.

Q5.2 (a). The diffraction angle for light with wavelength λ is found from

d sin θ = nλ

(see p. 113 of Ostlie & Carroll). Taking the implicit derivative of both sides gives

d cos θ∆θ = n∆λ,

which relates a small change in wavelength ∆λ to the corresponding small change in
diffration angle. For a grating with 300 lines per millimeter, d = 300−1 mm = 3.33 ×



10−6 m, and the second-order (n = 2) spectrum will have the sodium D lines at a diffrac-
tion angle θ = 0.361 rad = 21.7◦. (This comes from solving the first equation above for
θ, using the average wavelength λ = 589 nm of the two D lines). The angular separation
of the two lines, which have ∆λ = 0.597 nm, is then found from the second equation as
∆θ = 3.83× 10−4 rad = 0.0219◦.

(b). The smallest wavelength that a diffraction grating can resolve is

∆λ =
λ

nN
.

With λ = 589 nm and ∆λ = 0.597 nm and n = 2, the number of illuminated grating lines
when the sodium D lines are just resolved is found as N = 494.

Q5.11 The wavelengths of hydrogen emission follow Rydberg’s formula,

1
λ

= RH

(
1
n2

1

− 1
n2

2

)
,

where n1 and n2 are the principal quantum numbers of the lower (final) and upper (initial)
levels involved in the electron transition. For a given n1, the shortest-wavelength emission is
given by the limit n2 →∞:

1
λlim

=
RH
n2

1

,

or

λlim =
n2

1

RH

With the Rydberg constant RH = 1.097 × 107 m−1, the series limits are 91.2 nm (n1 = 1;
Lyman series), 365 nm (n1 = 2; Balmer series) and 821 nm (n1 = 3; Paschen series). These
limits fall in the far-UV, near-UV and near-IR parts of the electromagnetic spectrum.

Q5.15 (a). If the electron spends 10−8 s in the first excited state (n = 2), then the energy of this
state is uncertain by an amount given by

∆E2 ≈
h̄

∆t2
≈ h̄

10−8 s
≈ 1.05× 10−26 J ≈ 1.05× 10−26 eV

(b). The wavelength of the photon involved in a transition between n = 1 and n = 2 is given
by

hc

λ
= E2 − E1.

Taking the implict derivative of both sides,

−hc∆λ
λ2

= ∆E2 −∆E1.

We can neglect the uncertainty ∆E1 in the ground-state energy, since we assume that
the lifetime in this (stable) state is arbitrarily long. Hence,

∆λ =
λ2

hc
∆E2.

(I’ve dropped the minus sign, since the signs of ∆λ and ∆E2 are unimportant). Plugging
in the numbers, with λ = 122 nm for the Lyman α transition, gives ∆λ = 7.8× 10−7 nm
— a tiny amount of broadening!



Q7.4 (a). The generalized form of Kepler’s third law is

P 2 =
4π2

G(mA +mB)
a3

The period is given as P = 49.94 yr, while the semi-major axis of the reduced mass can
be calculated from the parallax and angular extent

a = 7.61(d/pc) AU = 7.61(1/0.37921) = 20.07 AU = 3.00× 1012 m

(note how easily everything is done using arseconds, parsecs and AU). Kepler’s third law
then gives the total mass M = mA +mB = 6.43× 1030 kg.
For the individual components, the semi-major axes are given by aA = mB/M and
aB = mA/M . Taking the ratio of these expressions gives the mass ratio of the system,

aA
aB

=
mB

mA

(see equation 7.1 of Ostlie & Carroll), and so we have mB/mA = 0.466. Combining this
result with the calculated total mass, the masses of the individual components are found
as mA = 4.39× 1030 kg = 2.21M� and mB = 2.04× 1030 kg = 1.03M�.

(b). From equation 3.8 of Ostlie & Carroll,

M = M� − 2.5 log
(
L

L�

)
.

Solving for the luminosity,
L

L�
= 10(M�−M)/2.5

Plugging in the numbers, with M� = 4.74, gives La = 22.5L� and Lb = 0.0240L�.

(c). Assuming that Sirius B radiates as a blackbody, then

LB = 4πR2
BσT

4
B

Solving for the radius gives RB = 5.85× 106 m = 8.74× 10−4R� = 0.917R⊕.

Q7.5 (a). For a circular-orbit binary system, equation 7.5 of Ostlie and Carroll gives

m1

m2
=
v2r

v1r
,

while equation 7.6 gives

(m1 +m2) sin3 i =
P

2πG
(v1r + v2r)3.

Plugging in the supplied values of the period and maximum measured radial velocities
gives m1 sin3 i = 1.15× 1031 kg = 5.80M� and m2 sin3 i = 5.67× 1030 kg = 2.85M�.

(b). For randomly-oriented orbits, and taking into account the Doppler-shift selection effect,
〈sin3 i〉 ≈ 2/3. This gives mass estimates as m1 ≈ 1.7 × 1031 kg ≈ 8.7M� and m2 ≈
8.5× 1030 kg ≈ 4.3M�.

Q7.6 (a). For a circular-orbit binary system, equation 7.5 of Ostlie and Carroll gives

m1

m2
=
v2r

v1r
.

Plugging in the numbers, we find m1/m2 = 4.15.



(b). Kepler’s third law for circular orbits gives the sum of masses as

(m1 +m2) sin3 i =
P

2πG
(v1r + v2r)3

(cf. equation 7.6 of Ostlie & Carroll). Assuming i = 90◦, plugging in the numbers gives
m1 +m2 = 1.02× 1031 kg = 5.13M�.

(c). Combining the above numbers, we find that m1 = 8.23 × 1030 kg = 4.14M� and m2 =
1.98× 1030 kg = 1.00M�.

(d). The individual radii can be found from the timing of the eclipses. The time between
first contact and minimum light gives the radius of the secondary (assuming that it’s the
smaller star), via

R2 =
v

2
(tb − ta)

(cf. equation 7.8 of Ostlie & Carrol). For i = 90◦, the relative velocity of the two stars
during eclipse is v = v1r + v2r = 27.8 kms−1, and so the secondary radius is found as
R2 = 6.97× 108 m = 1.00R�.
The radius of the primary is found from the duration of the primary minimum, as

R1 =
v

2
(tc − tb) +R2.

Plugging in the numbers gives R1 = 1.47× 109 m = 2.11 R�.

(e). The ratio of effective temperatures can be found from the ratio of the eclipse depths:

T2

T1
=
(
F0 − F1

F0 − F2

)1/4

=
(

1− F1/F0

1− F2/F0

)1/4

(this comes from equation 7.11 of Ostlie & Carrol; but I’ve used F instead of B to denote
the flux received here on earth. These are not surface fluxes, they are measured fluxes!).
To find the eclipse depths, we use the observed bolometric magnitudes:

F1

F0
= 10(mbol,0−mbol,1)/2.5 = 0.0302,

F2

F0
= 10(mbol,0−mbol,2)/2.5 = 0.964.

Solving for the effective temperature ratio, we find T2/T1 = 2.28.

Bonus The energy expended can be calculated from the difference between the initial and final
energy of SpaceShip One. In its initial state, at rest on the ground, it has a total (gravitational
plus kinetic) eneregy per unit mass given by

Einit = −GM⊕
R⊕

+
1
2
v2

rot.

Here, vrot is the velocity due to the Earth’s rotation:

vrot =
2π

1 dy
R⊕ cos l,

where l is the launch latitude (cos l = sin θ).

In the final state, with altitude A above the Earth’s surface, the total energy per unit mass is
given by

Efinal = − GM⊕
R⊕ +A

+
1
2
v2

tan,



where vtan is the tangential velocity relative to the Earth’s center. Note that there is no
contribution from the radial velocity, since it goes to zero when the maximum altitude is
reached. To find vtan, we make use of conservation of angular momentum, which requires that

vrotR⊕ = vtan(R⊕ +A)

Hence,

Efinal = − GM⊕
R⊕ +A

+
1
2
v2

rot

(
R⊕

R⊕ +A

)2

Taking the difference between the two expressions, the energy expended per unit mass is

∆E = Efinal − Einit = −GM⊕
(

1
R⊕ +A

+
1
R⊕

)
+

1
2
v2

rot

[(
R⊕

R⊕ +A

)2

− 1

]
.

Plugging in the numbers, we find that ∆E = 1.08× 106 Jkg−1.

To compare against the equivalent value for launch into a circular orbit, note that for the
circular-orbit case angular momentum will not be conserved (because we need to thrust in the
tangential direction to reach orbit). However, for a circular orbit, the tangential velocity can
be found by balancing centripetal and gravitational forces:

v2
tan

R⊕ +A
=

GM⊕
(R⊕ +A)2

,

from which we have
1
2
v2

tan =
GM⊕

2(R⊕ +A)

The energy per unit mass required to reach orbit then becomes

∆Eorb = −GM⊕
(

1
R⊕ +A

+
1
R⊕

)
+

GM⊕
2(R⊕ +A)

− 1
2
v2

rot.

Plugging in the numbers, we find that ∆Eorb = 31.7 × 106 Jkg−1. This is ∼ 30 times more
than the SpaceShip One flight, indicating that private spaceflight will likely be quite a bit more
expensive than people might expect from examining the costs of the SpaceShip One project.


