
Assignment 1 — Solutions [Revision : 1.3]

Q3.2 At a distance d from a light source with luminoisty L, the radiant flux is given by

F =
L

4πd2
.

Rearranging, we have

d =

√
L

4πF
.

Then, with L = 100 W (the bulb’s luminosity), and F = 1365 Wm−2 (the solar irradiance),
we find that d = 0.076 m = 7.6 cm.

Q3.3 (a). (i) dpc = 1/p′′ = 1/0.379′′ = 2.64 pc
(ii) 2.64 pc = 2.64× 3.26 ly = 8.60 ly

(iii) 2.64 pc = 2.64× 206266 AU = 5.45× 105 AU
(iv) 5.45× 104 AU = (5.45× 104)× (1.5× 1011) m = 8.17× 1015 m

(b). Distance modulus m−M = 5 log(d/10 pc). With d = 2.64 pc, m−M = −2.89

Q3.4 From the preceding question,

mbol −Mbol = 5 log(d/10 pc) = −2.89.

From Example 3.6.1 of Ostlie & Carroll, mbol = −1.53, from which we find Mbol = 1.36. Then
using

M −M� = −2.5 log
(
L

L�

)
,

we find L/L� = 10(1.36−4.74)/−2.5 = 22.5.

Q3.6 For any two stars,

m1 −m2 = −2.5 log
(
F1

F2

)
.

Let star 2 be the Sun placed at 10 pc; then, m2 = M�, while F2 = F10,�. Then,

m1 −M� = −2.5 log
(

F1

F10,�

)
.

Rearranging, and dropping the 1 subscripts,

m = M� − 2.5 log
(

F

F10,�

)
.

Q3.9 (a). The Stefan-Boltzmann equation gives the luminosity as

L = 4πR2σT 4;

plugging in the supplied numbers, we obtain L = 1.17× 1031 W = 3.05× 104 L�.

(b). Applying equation (3.8) from Ostlie & Carroll,

M = M� − 2.5 log
(
L

L�

)
,

with the Sun’s absolute bolometric magnitude M� = 4.74, gives M = −6.47.



(c). The absolute and apparent magnitudes are related via the distance modulus,

m−M = 5 log(d/10 pc).

With d = 123 pc, we find m = −1.01.

(d). Using the values found above, m−M = 5.45.

(e). At the star’s surface,

Fsurf =
L

4πR2
= σT 4.

Plugging in the numbers, Fsurf = 3.49× 1010 Wm−2.

(f). The radiant flux at the Earth’s surface is given by

F =
L

4πd2

Plugging in the numbers, F = 6.44× 10−8 Wm2. This is a factor of ∼ 5× 10−11 smaller
than the solar irradiance F� = 1365 Wm−2.

(g). From Wien’s law,

λmax =
0.0029 Km

T
.

Plugging in the numbers, λmax = 103 nm.

Q3.10 (a). The full Planck function is

Bλ(T ) =
2hc2/λ5

ehc/λkT − 1
.

In the limit where λ � hc/kT the argument of the exponential in the denominator is
very small, and we can use the Taylor-series expansion

ehc/λkT ≈ 1 + hc/λkT.

Then, the Planck function becomes

Bλ(T ) ≈ 2hc2/λ5

1 + hc/λkT − 1
≈ 2ckT

λ4
.

This is the Rayleigh-Jeans law; it does not depend on Plancks constant h, and blows up
in the short-wavelength limit.

(b). See Fig. 1. The Rayleigh-Jeans value is twice as large as the Planck function at λ ≈
2000 nm.

Q3.11 The full Planck function is

Bλ(T ) =
2hc2/λ5

ehc/λkT − 1
.

In the limit where λ� hc/kT the exponential in the denominator is very large, and the “-1”
term can be neglected. Then, we have

Bλ(T ) ≈ 2hc2λ−5e−hc/λkT ,

which matches Wien’s empirically derived relation

Bλ(T ) ≈ aλ−5e−b/λT

(for appropriate choices of a and b).



Figure 1: The Planck function for the Sun (T� = 5777 K), and the Rayleigh-Jeans approximation
(dotted).



Q3.13 (a). The Planck function per unit frequency interval is

Bν(T ) =
2hν3/c2

ehν/kT − 1

To find the frequency maximum νmax, we solve the equation

∂Bν
∂ν

=
2h
c2

(
3ν2

ehν/kT − 1
− hν3/kTehν/kT

(ehν/kT − 1)2

)
= 0

Simplifying,
3
(
ehν/kT − 1

)
− hν/kTehν/kT = 0

Introducing u ≡ hν/kT − 3, this becomes

ueu+3 + 3 = 0,

which can be rearranged as
ueu = −3e−3.

This is a nasty transcendental equation, whose solution involves the Lambert W funtion
(see Wikipedia). A numerical approximation to the solution is

u = −0.179.

Substituting the definition of u back in, we have

hν/kT − 3 = −0.179,

which can be rearranged to get the final result

νmax = 2.82
kT

h
= 5.88× 1010Hz K−1 · T.

(b). Applying the above expression to the Sun gives νmax = 3.40× 1014 Hz.
(c). The wavelength is λ = c/νmax = 880 nm; this is in the infra-red.

Q3.16 The filtered flux in some passband x is given by

Fx =
∫ ∞

0

FλSx(λ)dλ.

If λx denotes the central wavelength of the passband, and ∆λx the full width, then this may
be approximated by

Fx ≈ Fλx∆λx
(see p. 78 of Ostlie & Carroll). Assuming that Fλ ∝ Bλ(T), with a blackbody temperature of
9, 600 K, gives FU ∝ 2.1, FB ∝ 2.4, and FV ∝ 1.5 (with the same constant of proportionality).
Even though the Planck function is largest in the U band, Vega appears brightest in the B
band due to the larger bandwidth.

Q3.19 (a). Assuming a blackbody spectrum, the U −B color is given by

U −B = −2.5 log
(
B365∆λU
B440∆λB

)
+ CU−B

(see p. 78 of Ostlie & Carroll). Evaluating the Planck function Bλ(T ) for the surface
temperature T = 22, 000 K of Shaula gives U − B = −1.1. A similar procedure gives
B − V = −0.23. The observed value of U − B = −0.90 is rather redder than the
calculated value, due to departures of the star’s spectrum from a true blackbody (see Fig.
3.11 of Ostlie & Carroll)



(b). The distance to Shaula is d = 1/p′′ = 216 pc; using the formula

V −MV = 5 log(d/10 pc)

then gives the absolute visual magnitude as MV = −5.05.

Bonus The amount of solar radiation intercepted by the Earth every second is given by the product
of the solar irradiance and the Earth’s cross sectional area:

dE
dt

= F� · πR2
⊕.

where F� is, as usual, the solar constant. In thermal equilibrium, this must equal the amount
re-radiated every second — that is, the Earth’s luminosity. Assuming blackbody emission, this
is given by

L⊕ = 4πR2
⊕σT

4.

Setting dE/dt = L⊕ and solving for T gives

T =
(
F�
4σ

)1/4

;

plugging in the numbers gives 278 K. This is rather smaller than the global average tempera-
tures of ∼ 287 K (14 ◦C); the discrepancy is caused by the greenhouse effect (the discrepancy
would be much larger if we had included the fact that much of the solar irradiance is reflected
of clouds in the Earth’s atmosphere).


