Astronomy 310 — Final Exam

- 1. The parallax of a star is 10 milli-arcseconds, and its apparent visual magnitude is 3.5. What is its absolute visual magnitude?
 - (a) 5.5
 - (b) 3.5
 - (c) 1.5
 - (d) -1.5
 - (e) -3.5
- 2. A star has a radius of $3 R_{\odot}$, and an effective temperature twice that of the Sun. What is its luminosity?
 - (a) $1 L_{\odot}$
 - (b) $6 L_{\odot}$
 - (c) $49 L_{\odot}$
 - (d) $144 L_{\odot}$
 - (e) $256 L_{\odot}$
- 3. Consider a binary system where the semi-major axis shrinks by a factor of two, due to tidal interactions. What is the change in the period (expressed as the ratio of the new period to the old period)?
 - (a) $\frac{1}{2^{3/2}}$
 - (b) $\frac{1}{2^{2/3}}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{1}{2^3}$
 - (e) $\frac{1}{3^2}$

4. In which sort of binary system can the stellar radii be determined from the light curve?

- (a) Eclipsing
- (b) Spectroscopic
- (c) Visual
- (d) Spectrum
- (e) Optical
- 5. What is the correct (temperature) ordering of the Harvard spectral classification system?
 - (a) A-B-F-G-K-M-O
 - (b) F-B-A-M-O-G-K
 - (c) O-G-K-A-B-M-F
 - (d) O-B-A-F-G-K-M
 - (e) K-F-O-G-M-A-B
- 6. What equation can be used to calculate the relative number of atoms in each ionization stage of a given element?
 - (a) Boltzmann
 - (b) Saha
 - (c) Fermi-Dirac
 - (d) Planck
 - (e) Bose-Einstein

- 7. In terms of the specific intensity I, what is the correct expression for the amount of radiation flowing per unit time, per unit solid angle through a unit area at an angle θ to the normal?
 - (a) $I\sin\theta$
 - (b) *Ιθ*
 - (c) $I\cos\theta$
 - (d) $I\cos\theta\sin\theta$
 - (e) *I*
- 8. A beam of radiation with specific intensity I is normally incident on an absorbing slab with optical thickness τ . What is the specific intensity of the radiation coming out of the slab?
 - (a) *I*
 - (b) $I\tau$
 - (c) $I \log(\tau)$
 - (d) $I \exp(\tau)$
 - (e) $I \exp(-\tau)$
- 9. Which of these opacity sources does not depend on wavelength?
 - (a) Bound-free
 - (b) Bound-bound
 - (c) Electron scattering
 - (d) Free-free
 - (e) H⁻
- 10. Which of these mechanisms is responsible for the broad line profiles seen in white dwarf stars?
 - (a) Thermal Doppler broadening
 - (b) Pressure/Collisional broadening
 - (c) Natural broadening
 - (d) Turbulent broadening
 - (e) Rotation
- 11. What is the curve of growth?
 - (a) The increase in the radius R of a star as its mass M is increased.
 - (b) The increase in the number of ionized atoms in an atmosphere as the effective temperature $T_{\rm eff}$ is increased.
 - (c) The increase in the mass M of a star as it accretes from a binary companion.
 - (d) The increase in the core radius R of a star as it burns fuel.
 - (e) The increase of the equivalent width W of a line profile as the column density N of absorbers is increased.
- 12. Over what timescale does a star respond to departures from hydrostatic equilibrium?
 - (a) Virial
 - (b) Nuclear
 - (c) Kelvin-Helmholtz
 - (d) Dynamical
 - (e) Thermal
- 13. According to the virial theorem, if a star without any nuclear reactions contracts, what must happen to the thermal energy?

- (a) It must stay the same
- (b) It must decrease by the change in gravitational energy
- (c) It must increase by the change in gravitational energy
- (d) It must decrease by half the change in gravitational energy
- (e) It must increase by half the change in gravitational energy
- 14. If the pressure everywhere in the star follows the relation $P \propto \rho^{\gamma}$, for some arbitrary constant γ , what sort of structure does the star have?
 - (a) Isothermal
 - (b) Adiabatic
 - (c) Isobaric
 - (d) Polytropic
 - (e) Degenerate
- 15. Which of these mass-fraction combinations corresponds most closely to Solar abundance?
 - (a) X = 0.7, Z = 0.02
 - (b) X = 0.7, Z = 0.0001
 - (c) X = 0.9, Z = 0.01
 - (d) X = 0.3, Z = 0.002
 - (e) X = 0.4, Z = 0.4
- 16. In a star in thermal equilibrium, what must be true if L_r is locally constant (i.e., doesn't vary with radius)?
 - (a) M_r is constant
 - (b) ϵ is zero
 - (c) T decreases outward
 - (d) P decreases outward
 - (e) $\nabla = \nabla_{\rm ad}$
- 17. Which of these energy transport mechanisms is not always operational in any given part of a star?
 - (a) Conduction
 - (b) Radiation
 - (c) Convection
- 18. What happens when a star exceeds the Eddington limit at its surface?
 - (a) The star collapses to a neutron star.
 - (b) The star undergoes a supernova.
 - (c) Convection sets in.
 - (d) A magnetic field is generated.
 - (e) Radiation pressure blows the surface layers off in a wind.
- 19. Which of these expressions is a criterion for convection to begin?
 - (a) $\nabla_{ad} > \nabla$
 - (b) $\nabla_{rad} > \nabla_{ad}$
 - (c) $\Gamma < 1$
 - (d) $\frac{d \ln T}{d \ln P} > 1$
 - (e) $\frac{T}{a^{2/3}} < 1200$

20. Which of the following elements has the largest binding energy per nucleon?

- (a) ${}^{56}_{26}$ Fe
- (b) ${}_{2}^{4}$ He
- (c) $^{238}_{92}$ U
- (d) ${}^{12}_{6}C$
- (e) ${}^{56}_{28}$ Ni
- 21. What do the CNO cycle and the PP chain have in common?
 - (a) Fraction of energy released as neutrinos
 - (b) Rate of production of ${}^{4}_{2}$ He
 - (c) Total rest mass / energy produced per $^{4}_{2}$ He created
 - (d) Sensitivity to temperature
 - (e) Dependence on metalicity
- 22. According to the Vogt-Russel theorem, which two parameters uniquely determine the structure and evolution of a star?
 - (a) Radius and effective temperature
 - (b) Composition and radius
 - (c) Luminosity and effective temperature
 - (d) Mass and composition
 - (e) Mass and radius
- 23. Put the components of the solar atmosphere in the correct in-out order
 - (a) Chromosphere–corona–photosphere
 - (b) Photosphere-chromosphere-corona
 - (c) Corona–photosphere–chromosphere
 - (d) Photosphere–corona–chromosphere
 - $(e) \ Chromosphere-photosphere-corona$
- 24. What do the cores of low-mass and high-mass main sequence stars have in common?
 - (a) Both have a uniform composition
 - (b) Both are burning hydrogen
 - (c) Both are convective
 - (d) Both are radiative
 - (e) Both are contracting
- 25. Which of these nuclear reactions doesn't occur during the pre-white dwarf evolution of a $1 M_{\odot}$ star?
 - (a) PP chain
 - (b) CNO cycle
 - (c) Carbon burning
 - (d) Triple alpha
- 26. What element is enriched by incomplete CNO-cycle burning?
 - (a) Hydrogen
 - (b) Neon
 - (c) Carbon
 - (d) Nitrogen

- (e) Oxygen
- 27. What is the reason why a $10 M_{\odot}$ main-sequence star has a convective core?
 - (a) The opacity is large in the core
 - (b) The opacity is small in the core
 - (c) The nuclear energy generation has a high temperature sensitivity
 - (d) There are compositions gradients in the core
 - (e) The core is contracting
- 28. Which of these is the principal element produced during a helium flash?
 - (a) Hydrogen
 - (b) Helium
 - (c) Carbon
 - (d) Oxygen
 - (e) Silicon
- 29. In what evolutionary stage of a star would you expect to find an isothermal core surrounded by a hydrogen-burning shell?
 - (a) After the helium flash
 - (b) Shortly after the end of the main sequence
 - (c) At the beginning of the main sequence
 - (d) On the asymptotic giant branch
 - (e) Toward the end of the main sequence
- 30. Where in a $1 M_{\odot}$ star would you expect to find the CNO cycle occurring?
 - (a) Core hydrogen burning
 - (b) Core helium burning
 - (c) Core carbon burning
 - (d) Shell hydrogen burning
 - (e) Shell helium burning
- 31. Stars above $\approx 1.1 M_{\odot}$ evolve briefly toward higher effective temperatures at the end of their mainsequence lifetimes. What process is responsible for this blueward evolution?
 - (a) Hydrogen shell ignition
 - (b) Helium shell ignition
 - (c) Overall Kelvin-Helmholtz contraction
 - (d) Onset of convection
 - (e) Core degeneracy
- 32. What does the Schönberg-Chandrasekhar limit correspond to?
 - (a) The maximum central temperature that a convective core can have
 - (b) The maximum mean density that a non-degenerate core can have
 - (c) The maximum boundary pressure that an isothermal core can have
 - (d) The maximum total mass that a white dwarf can have
 - (e) The maximum core mass that a neutron star can have
- 33. What opacity source is responsible for the Hayashi line?
 - (a) Bound-free

- (b) Bound-bound
- (c) Electron scattering
- (d) Free-free
- (e) H⁻
- 34. What is always true of a star lying on the Hayashi line?
 - (a) It is fully convective
 - (b) it is fully radiative
 - (c) It has core helium burning occurring
 - (d) It has shell hydrogen burning occurring
 - (e) It is losing mass
- 35. What physical conditions are most favorable to electron degeneracy?
 - (a) Low temperature and high density
 - (b) High temperature and low density
 - (c) High temperature and high density
 - (d) Low temperature and low density
- 36. What quantum-mechanical principle is responsible for electron degeneracy?
 - (a) The Heisenberg uncertainty principle
 - (b) Schrodinger's cat
 - (c) The Pauli exclusion principle
 - (d) Wigner's friend
 - (e) The Einstein-Podolski-Rosen paradox
- 37. What is the cause of first dredge up?
 - (a) Convective mixing on the asymptotic giant branch
 - (b) Convective mixing on the red giant branch
 - (c) Radiative levitation on the horizontal branch
 - (d) Mass loss on the main sequence
 - (e) Thermal pulses on the asymptotic giant branch
- 38. What element is typically brought to the surface during third dredge up?
 - (a) Silicon
 - (b) Carbon
 - (c) Nitrogen
 - (d) Oxygen
 - (e) Neon
- 39. Between which two evolutionary stages (in order) does the helium flash occur?
 - (a) Main sequence, red giant branch
 - (b) Asymptotic giant branch, red giant branch
 - (c) Horizontal branch, main sequence
 - (d) Red giant branch, horizontal branch
 - (e) Asymptotic giant branch, horizontal branch
- 40. Place the evolutionary stages in the correct order
 - (a) Main sequence red giant branch horizontal branch asymptotic giant branch

- (b) Horizontal branch main sequence asymptotic giant branch red giant branch
- (c) Asymptotic giant branch main sequence red giant branch horizontal branch
- (d) Main sequence horizontal branch red giant branch asymptotic giant branch
- $(e) \ \ Red \ giant \ branch-main \ sequence-horizontal \ branch-asymptotic \ giant \ branch$
- 41. In the core of a star above $10 M_{\odot}$, what happens after nuclear burning reaches $\frac{56}{26}$ Fe?
 - (a) It slowly cools off
 - (b) It collapses
 - (c) It explodes
 - (d) It becomes isothermal due to conduction
 - (e) It burns the ${}^{56}_{26}$ Fe to make ${}^{56}_{28}$ Ni
- 42. What sorts of nuclei are produced during r-process nucleosynthesis?
 - (a) Neutron-rich
 - (b) Electron-rich
 - (c) Low-A
 - (d) Proton-rich
 - (e) Low-Z
- 43. What element is always seen in the spectrum of a type II supernova?
 - (a) Helium
 - (b) Silicon
 - (c) Hydrogen
 - (d) Carbon
 - (e) Oxygen
- 44. What phenomenon precedes complete envelope ejection during the final AGB phase of a low-mass star?
 - (a) Core collapse
 - (b) Thermal pulses
 - (c) Carbon ignition
 - (d) Core helium flash
 - (e) Neutronization

45. During core-collapse in a high-mass star, what fraction of the energy is released as neutrinos?

- (a) 1%
- (b) 10%
- (c) 50%
- (d) 90%
- (e) 99%

46. What sort of star will the central star of a planetary nebula cool down to become?

- (a) White dwarf
- (b) Brown dwarf
- (c) Red dwarf
- (d) Neutron star
- (e) Black hole

- 47. Why is conduction so efficient in white dwarfs?
 - (a) Lack of hydrogen/helium
 - (b) Electron degeneracy
 - (c) High density
 - (d) High temperature
 - (e) Lack of photons
- 48. How are type Ia supernova most likely formed?
 - (a) Collapse of an accreting white dwarf
 - (b) Collapse of a massive star
 - (c) Merger of two black holes
 - (d) Degenerate C/O ignition in an accreting white dwarf
 - (e) Explosion of a quark star
- 49. What is the typical radius of a neutron star?
 - (a) 1 km
 - (b) 10 km
 - (c) $100 \,\mathrm{km}$
 - (d) 1,000 km $\,$
 - (e) $10,000 \, \mathrm{km}$
- 50. Why don't free neutrons decay in neutron stars?
 - (a) The temperature is too low
 - (b) The strong nuclear force inhibits the decay
 - (c) The decay is endothermic
 - (d) All of the possible electron states are already occupied
 - (e) The density is not high enough