34 — Degeneracy [Revision : 1.1]

- Breakdown of ideal gas law
 - So far, assumed gas pressure follows ideal equation of state:

$$P_{\rm gas} = \frac{\rho kT}{\mu m_{\rm H}}$$

- However, at sufficiently high densities, and sufficiently low temperatures, ideal assumption begins to break down:
 - * Number density of particles n is large
 - * Typical momentum of particles is small
 - * Particles concentrated in small volume of phase (momentum/position) space
 - * But there's a limit to how tightly particles can be packed in phase space: Pauli exclusion principle
 - * In limit where exclusion principle is important, gas is **degenerate**; different equation of state
- Non-relativistic degenerate gas
 - Consider Maxwell-Boltzmann velocity distribution function for (non-degenerate) particles of mass m at temperature T:

$$n_v dv = n \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-mv^2/2kT} 4\pi v^2 dv$$

(number of particles per unit volume with velocities in interval [v, v + dv])

- Can also be written as momentum distribution function:

$$n_p \mathrm{d}p = n \left(\frac{1}{2\pi mkT}\right)^{3/2} \mathrm{e}^{-p^2/2mkT} 4\pi p^2 \mathrm{d}p$$

- In limit $T \to 0$, particles concentrated around p = 0; all try to have lowest possible momentum & energy E(p), which is zero
- However, this can run foul of Pauli exclusion principle, since all particles in same momentum state
- In fact, lowest momentum/energy state has all particles filling up available cells of phase space, up to some maximum momentum $p_{\rm F}$ (the **Fermi momentum**)

$$n_p dp = \begin{cases} \frac{4\pi p^2 dp}{h^3/2} & p < p_F \\ 0 & p > p_F \end{cases}$$

Numerator: volume of shell in phase space with momentum in interval [p, p+dp]; denominator: volume in phase space occupied by each distinct quantum state (spin gives factor of 2)

- Fermi momentum set by requirement

$$\int_0^{p_{\rm F}} \frac{4\pi p^2 \mathrm{d}p}{h^3/2} \, \mathrm{d}p = n,$$

so that

$$p_{\rm F} \sim n^{1/3}$$

(henceforth, drop all unimportant factors in expressions, for simplicity)

- To obtain equation of state, recall that pressure scales as

$$P_{\rm gas} \sim u$$

where u is kinetic energy density

- To find u, integrate over all occupied states

$$u \sim \int_0^{p_{\rm F}} E(p) n_p \,\mathrm{d}p$$

If gas is non-relativistic, $E(p) = p^2/2m$; hence,

$$u \sim \int_0^{p_{\rm F}} p^2 p^2 \, \mathrm{d}p \sim p_{\rm F}^5$$

and

$$P_{\rm gas} \sim p_{\rm F}^5 \sim n^{5/3}$$

– With $\rho \sim n$, final result:

$$P_{\rm gas} \sim \rho^{5/3}$$

- Discussion:
 - * This is **degeneracy pressure**; comes from exlusion principle rather than thermal motions
 - * Independent of temperature
 - $\ast\,$ Polytropic a fully degenerate star is a polytrope
 - * Strictly applies at zero temperature, but becomes good approximation when average particle momenta are below $p_{\rm F}$
 - * This limit equivalent to inequality

$$kT \lesssim \frac{p_{\rm F}^2}{2m} \equiv E_{\rm F}$$

 $(E_{\rm F}$ is **Fermi energy**). Note mass dependence; lighter particles become denerate first

* Often see this inequality written as

$$\frac{T}{rho^{2/3}}<\mathcal{D}$$

where \mathcal{D} depends on m

- * Electron degeneracy important in cores of low-mass stars, and in white dwarfs
- * Neutron degeneracy important in neutron stars (no electrons left!)
- * Degeneracy responsible for **helium flash**: when helium ignites, temperature increases (particles move faster), but pressure does not increase (because degeneracy condition above still holds); no 'safety valve' where star expands to cool off reactions, thus runaway burning
- Relativistic degenerate gas
 - Similar to derivation above, but must use Einstein energy-momentum relation

$$E^2 = p^2 c^2 + m_0^2 c^4$$

 $(m_0 \text{ is rest mass})$

– In relativistic limit $E \gg m_0 c^2$, $E \sim p$

$$u \sim \int_0^{p_{\rm F}} p p^2 \, \mathrm{d}p \sim p_{\rm F}^4$$

and

$$P_{\rm gas} \sim \rho^{4/3}$$

 Electrons become relativistic in white dwarf stars as they approach Chandrasekhar limit (limiting mass, above which there is collapse to neutron star)