
34 — Degeneracy [Revision : 1.1]

• Breakdown of ideal gas law

– So far, assumed gas pressure follows ideal equation of state:

Pgas =
ρkT

µmH

– However, at sufficiently high densities, and sufficiently low temperatures, ideal assumption
begins to break down:

∗ Number density of particles n is large
∗ Typical momentum of particles is small
∗ Particles concentrated in small volume of phase (momentum/position) space
∗ But there’s a limit to how tightly particles can be packed in phase space: Pauli

exclusion principle
∗ In limit where exlusion principle is important, gas is degenerate; different equation

of state

• Non-relativistic degenerate gas

– Consider Maxwell-Boltzmann velocity distribution function for (non-degenerate) particles
of mass m at temperature T :

nvdv = n
( m

2πkT

)3/2

e−mv2/2kT 4πv2dv

(number of particles per unit volume with velocities in interval [v, v + dv])

– Can also be written as momentum distribution function:

npdp = n

(
1

2πmkT

)3/2

e−p2/2mkT 4πp2dp

– In limit T → 0, particles concentrated around p = 0; all try to have lowest possible
momentum & energy E(p), which is zero

– However, this can run foul of Pauli exclusion principle, since all particles in same momen-
tum state

– In fact, lowest momentum/energy state has all particles filling up available cells of phase
space, up to some maximum momentum pF (the Fermi momentum)

npdp =

{
4πp2dp
h3/2 p < pF

0 p > pF

Numerator: volume of shell in phase space with momentum in interval [p, p+dp]; denom-
inator: volume in phase space occupied by each distinct quantum state (spin gives factor
of 2)

– Fermi momentum set by requirement∫ pF

0

4πp2dp

h3/2
dp = n,

so that
pF ∼ n1/3

(henceforth, drop all unimportant factors in expressions, for simplicity)



– To obtain equation of state, recall that pressure scales as

Pgas ∼ u

where u is kinetic energy density

– To find u, integrate over all occupied states

u ∼
∫ pF

0

E(p)np dp

If gas is non-relativistic, E(p) = p2/2m; hence,

u ∼
∫ pF

0

p2p2 dp ∼ p5
F

and
Pgas ∼ p5

F ∼ n5/3

– With ρ ∼ n, final result:
Pgas ∼ ρ5/3

– Discussion:

∗ This is degeneracy pressure; comes from exlusion principle rather than thermal
motions

∗ Independent of temperature
∗ Polytropic — a fully degenerate star is a polytrope
∗ Strictly applies at zero temperature, but becomes good approximation when average

particle momenta are below pF

∗ This limit equivalent to inequality

kT .
p2
F

2m
≡ EF

(EF is Fermi energy). Note mass dependence; lighter particles become denerate
first

∗ Often see this inequality written as

T

rho2/3
< D

where D depends on m

∗ Electron degeneracy important in cores of low-mass stars, and in white dwarfs
∗ Neutron degeneracy important in neutron stars (no electrons left!)
∗ Degeneracy responsible for helium flash: when helium ignites, temperature increases

(particles move faster), but pressure does not increase (because degeneracy condition
above still holds); no ‘safety valve’ where star expands to cool off reactions, thus
runaway burning

• Relativistic degenerate gas

– Similar to derivation above, but must use Einstein energy-momentum relation

E2 = p2c2 + m2
0c

4

(m0 is rest mass)



– In relativistic limit E � m0c
2, E ∼ p

– Hence,

u ∼
∫ pF

0

pp2 dp ∼ p4
F

and
Pgas ∼ ρ4/3

– Electrons become relativistic in white dwarf stars as they approach Chandrasekhar
limit (limiting mass, above which there is collapse to neutron star)


