
33 — The Hayashi Line [Revision : 1.2]

• Luminosity scaling laws

– Back in Notes 23, derived luminosity scaling relation:
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General result: L ∝ M3, but also M increases with µ (explaining luminosity increase on
main sequence)

– Big assumption: star is completely radiative

– Not too bad for ‘hot end’ of Hertzsprung-Russell diagram

– But once stars move across to Teff . 5, 000 K, strong convection zone forms due to H−

opacity (electron loosly bound to hydrogen atom)

– So, what is luminosity scaling relation for fully-convective star?

– Recap: for radiative diffusion,

Lrad =
16πr2acT 4

3κ̄ρ
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where
∇ ≡ d lnT

d lnP

is the temperature gradient in star. Luminosity determined by pressure-temperature
structure (which in turn comes from hydrostatic equilibrium)

– But for convective transport,

Lconv = 4πr2CP Tρ(∇−∇ad)3/2α2 (2βgHP )1/2 ∝ (∇−∇ad)3/2

– Because convection is v. efficient, constant of proportionality is v. large; only a tiny
excess of ∇ above ∇ad is required to transport all luminosity (so ∇ ≈ ∇ad)

– So, luminosity is almost completely decoupled from temperature-pressure structure. How
do we then compute it?

• Fully-convective stars

– Always will have radiative atmosphere at surface, because convection becomes inefficient
there

– Can use surface layers to constrain temperature-pressure structure inside

– Start by finding pressure at photosphere (τ = 2/3, T = Teff)

– In atmosphere, optical depth given by
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so if r = R at τ = 2/3,
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– Assume opacity constant in atmosphere:
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but from hydrostatic equilibrium:
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– So,
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– From star to star, κ̄ will itself vary with temperature and pressure; assume
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aT b,

and so
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which solves as
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– So, we now know pressure and temperature at base of atmosphere. This must match
smoothly onto interior solution

– Assume in interior ∇ = ∇ad, so
P = C T 1/∇ad ;

but an ideal-gas polytrope has

P = K−n
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and so we have a polytrope with n = 1/nablaad− 1 = 3/2

– Recall for polytropes:
r = λnξ,
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Also,
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– Set r = R in these expressions, solve for K scaling

K ∼ M1/3R

– Hence, in interior
P = C ′R−3/2M−1/3T 5/2

where C ′ depends only on µ and n



– To match surface solution, require that(
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For given M , this describes a one-to-one relationship between Teff and R — i.e., a curve
in HRD

– After some math, with
L = 4πR2σT 4

eff ,

can be rearranged as
lnTeff = A lnL + B lnM + const.

where
A =

0.75a− 0.25
b + 5.5a + 1.5

, B =
0.5a + 1.5

b + 5.5a + 1.5

• The Hayashi Line

– Need values for a and b; for H− opacity, good approximation is a ≈ 1, b ≈ 3, and so

A = 0.05, B = 0.2

– Nearly vertical line in HRD

– Weak dependence on mass means that all fully-convective stars lie on same Hayashi line

– Locus of stars that are fully convective

– No stars allowed to right of line; forbidden region


