33 — The Hayashi Line [Revision : 1.2]

e Luminosity scaling laws

Back in Notes 23, derived luminosity scaling relation:
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General result: L oc M3, but also M increases with u (explaining luminosity increase on
main sequence)

Big assumption: star is completely radiative
Not too bad for ‘hot end’” of Hertzsprung-Russell diagram

But once stars move across to Teg < 5,000K, strong convection zone forms due to H™
opacity (electron loosly bound to hydrogen atom)

So, what is luminosity scaling relation for fully-convective star?

Recap: for radiative diffusion,
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is the temperature gradient in star. Luminosity determined by pressure-temperature
structure (which in turn comes from hydrostatic equilibrium)

But for convective transport,
Leony = 472 CpTp(V — Vaa)*2a? (28gHp)? o (V = V,a)*/?

Because convection is v. efficient, constant of proportionality is v. large; only a tiny
excess of V above V,q is required to transport all luminosity (so V & V,q)

So, luminosity is almost completely decoupled from temperature-pressure structure. How
do we then compute it?

e Fully-convective stars

Always will have radiative atmosphere at surface, because convection becomes inefficient
there

Can use surface layers to constrain temperature-pressure structure inside
Start by finding pressure at photosphere (7 = 2/3, T = Teg)
In atmosphere, optical depth given by
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— Assume opacity constant in atmosphere:
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but from hydrostatic equilibrium:
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— So,
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— From star to star, k will itself vary with temperature and pressure; assume
R = RoPT?,

and so
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which solves as
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— So, we now know pressure and temperature at base of atmosphere. This must match
smoothly onto interior solution

— Assume in interior V = V,q, so
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but an ideal-gas polytrope has
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and so we have a polytrope with n = 1/nablaad — 1 = 3/2
— Recall for polytropes:
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— Set r = R in these expressions, solve for K scaling

K~ MY3R

— Hence, in interior
P = C/R73/2M71/3T5/2

where C’ depends only on g and n



— To match surface solution, require that
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For given M, this describes a one-to-one relationship between Tog and R — i.e., a curve
in HRD

— After some math, with
L = 47R*0 T,

can be rearranged as
InTog = Aln L + Bln M + const.

where
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e The Hayashi Line

— Need values for a and b; for H™ opacity, good approximation is a ~ 1, b = 3, and so
A =0.05, B=02

— Nearly vertical line in HRD

— Weak dependence on mass means that all fully-convective stars lie on same Hayashi line

Locus of stars that are fully convective

No stars allowed to right of line; forbidden region



