32— Post Main-Sequence Evolution [*Revision* : 1.1]

- Shell Ignition
 - Shortly before hydrogen exhaustion in center of stars above ~ $1.1 M_{\odot}$, energy produced by core is insufficient to match luminosity radiated by envelope
 - Typically occurs when $X \approx 0.05$
 - Kelvin-Helmholtz contraction makes up luminosity difference; star moves to higher $T_{\rm eff}$ on HR diagram little 'jag' in tracks
 - For stars below ~ $1.1 M_{\odot}$, no need for KH contraction; no jag
 - In both cases, main sequence evolution ends when hydrogen exhausted at center $(X \rightarrow 0)$
 - Then, a new energy source appears
 - * Core is made of 'inert' helium; relative mass $M_{\rm core}/M$ increases with M
 - * Core is hot because of high μ
 - * Core wants to be isothermal because $\epsilon = 0$ and so $F_{\rm rad} = 0$ and so dT/dr = 0
 - * Temperatures at core boundary high enough to burn hydrogen
 - * Shell ignition occurs!
 - * Shell appearance smooth for low-mass stars $(M \leq 1.3 M_{\odot})$
 - * Shell appearance abrupt for higher-mass stars $(M \gtrsim 1.3 M_{\odot})$
 - As shell burning continues, it adds helium to core; core mass grows
- Evolution to the Red
 - The envelope of the star had previously adjusted self for core burning
 - But now we have new, different energy source shell burning
 - Shell burning typically produces more luminosity than core burning (higher temperature)
 - Shell luminosity is greater than envelope can typically radiate
 - So, envelope absorbs excess luminosity, heats up and expands
 - Effective temperature decreases; star moves across to base of red giant branch (RGB) in Hertzsrpung-Russell diagram
 - Typically, timescale for evolution across HR diagram \sim shell burning timescale...
 - ... if it weren't for a problem in the core
 - Sidenote: astronomers still argue about why stars form red giants; all models show it, but why they show it is subject of great debate
- The Schönberg-Chandrasekhar limit
 - So far, we've neglected what happens in core
 - Initially, core is isothermal (although exceptions occur for high-mass stars $M \gtrsim 6 M_{\odot}$)
 - Core does not need to KH contract because not losing energy through boundary; kept warm by shell burning
 - However, core is growning in mass
 - Can it always support pressure of overlying envelope?
 - Assume temperature $T_{\rm core}$ within core (and at core boundary) is constant
 - Assume downward pressure of envelope at core boundary, P_{env} is constant (can show it depends mainly on mass anbd T_{core})

- Use virial theorem derivation to calculate upward pressure of core P_{core} :
 - * Consider core in hydrostatic equilibrium

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -g\rho = -\frac{GM_r}{r^2}\rho$$

* Multiply both sides by $4\pi r^3$, integrate over *core*:

$$\int_0^{R_{\rm core}} \frac{\mathrm{d}P}{\mathrm{d}r} 4\pi r^3 \,\mathrm{d}r = -\int_0^{R_{\rm core}} \frac{GM_r}{r^2} 4\pi r^3 \rho \,\mathrm{d}r = E_{\rm g,core}$$

where $E_{g,core}$ is gravitational energy of core

* Do integral on lhs by parts:

$$\left[4\pi r^{3} P\right]_{0}^{R_{\rm core}} - 3\int_{0}^{R_{\rm core}} P4\pi r^{2} \,\mathrm{d}r = E_{\rm g,core}$$

* Use ideal gas law:

$$4\pi R_{\rm core}^3 P_{\rm core} - \frac{3M_{\rm core}kT}{\mu m_H} = E_{\rm g,core}$$

* To calculate $E_{g,core}$, assume density is equal to mean density in core:

$$\rho \approx \frac{3M_{\rm core}}{4\pi R_{\rm core}^3}$$

Then,

$$E_{\rm g,core} \approx -\frac{3}{5} \frac{GM_{\rm core}^2}{R_{\rm core}}$$

* Solving for P_{core} :

$$P_{\rm core} = \frac{3}{4\pi R_{\rm core}^3} \left(\frac{M_{\rm core} k T_{\rm core}}{\mu m_H} - \frac{1}{5} \frac{G M_{\rm core}^2}{R_{\rm core}} \right)$$

- * This core pressure $P_{\rm core}$ must match the envelope pressure $P_{\rm env}$; the core adjusts its radius to make this so
- $\ast\,$ But can a match always be found? Not necessarily, because $P_{\rm core}$ has a local maximum, above which it cannot go
- $\ast\,$ To find maximum, differentiate $P_{\rm core}$ wrt to $R_{\rm core},\,\&$ set to zero; find

$$R_{\rm core,max} = \frac{4}{15} \frac{GM_{\rm core} \mu m_H}{kT_{\rm core}}$$

and

$$P_{\rm core,max} = \frac{10125}{1024G^3M_{\rm core}^2} \left(\frac{kT_{\rm core}}{\mu m_H}\right)^4$$

(Note: the derivation in O&C is wrong. Their answer is dimensionally correct, but their reasoning doesn't make sense)

- * Interesting result: as the core mass increases, eventually $P_{\text{core,max}} < P_{\text{env}}$, and there is no way the core can support envelope
- * This limiting core mass is called the Schönberg-Chandrasekhar limit

* Using result

$$P_{\rm env} \propto \frac{T_{\rm core}^4}{M^2}$$

(see Kippenhahn & Weigert) can show that SC limit reached at fractional mass

$$\frac{M_{\rm core}}{M} \approx 0.37 \left(\frac{\mu_{\rm env}}{\mu_{\rm core}}\right)^2$$

For $\mu_{\rm env} \approx 0.6$ (fully-ionized solar), and $\mu_{\rm core} \approx 1.3$ (all hydrogen turned to helium), find SC limit as

$$\frac{M_{\rm core}}{M} \approx 0.08$$

- Above SC limit, core begins to contract rapidly
- Contraction heats core, sets up temperature gradients, makes core radiate
- Whole process happens on KH timescale very quick!
- Means that evolution to red is much quicker than nuclear; leads to observational gap in distribution of stars in HRD (the Hertzsprung gap
- Important: SC limit is not cause of evolution to base of RGB; but it selts timescale
- Take note of special cases:
 - * For low-mass stars $(M \leq 1.3 M_{\odot})$, helium core is partly degenerate; higher pressure than predicted by above (ideal gas) argument, SC limit does not apply and evolution to RGB is slower
 - * For higher-mass stars $(M \gtrsim 2-3 M_{\odot})$, core is already above SC limit at end of main sequence; so, contraction happens immediately, isothermal core can never form