31 — Main-Sequence Stars [*Revision* : 1.1]

- Massive vs. Low-Mass Stars
 - Number of definitions exist for what constitutes a massive star
 - Structural: below $\sim 1.3\,M_{\odot},$ convective envelope; above, radiative
 - Energetic: below $\sim 1.2\,M_{\odot},\,\mathrm{PP}$ chain dominates; above, CNO cycle
 - Terminal: above ~ $9 M_{\odot}$, supernova; below, white dwarf
 - Spectroscopic: above ~ $1.5 M_{\odot}$, early spectral type (OBA); below, late
- Structural differences
 - Most significant structural difference is distribution of **convective** & **radiative zones**
 - In cores of low-mass stars like Sun
 - \ast Lower luminostiy means ${\bf PP}$ chain can generate sufficient energy to match star's needs
 - * Small temperature sensitivity (~ $T^4)$ means spread-out energy generation
 - * So, luminosity L_r grows slowly throughout core, and $F = L_r/4\pi r^2$ is moderate
 - * Radiation capable of transporting all this flux
 - * So, radiative core
 - But in cores of massive stars
 - \ast Higher luminosity means that CNO cycle must be used to match star's energy generation needs
 - * High temperature sensitivity (~ $T^{19})$ means centrally-concentrated energy generation
 - * So, luminosity L_r grows raidly in core, and $F = L_r/4\pi r^2$ is large
 - $\ast\,$ To transport all energy by radiation, temperature gradient very steep; convection sets in
 - * So, convective core
 - * Convection is very efficient, so $\nabla = \nabla_{ad}$ to high degree of accuracy
 - * Convection mixes composition changes due to nuclear burning; so, flat composition profile in core
 - In envelopes of low-mass stars like Sun
 - * Large opacity due to bound-free transitions of hydrogen and helium
 - $\ast\,$ To drive radiative flux through this opacity, need steep temperature gradient; convection sets in
 - $\ast\,$ So, convective envelope
 - * Depth of convection increases towards lower masses; below $\sim 0.3\,M_{\odot},$ whole star is convective
 - But in envelopes of high-mass stars
 - * Hydrogen and helium already ionized; opacity generally low
 - * To drive radiative flux, temperature gradient can be moderate; no need for convection
 - $\ast\,$ So, radiative envelope
 - * In the more-massive stars $(M \gtrsim 10 M_{\odot})$, iron and nickel cause opacity peak at $\sim 200,000 \text{ K}$; this 'iron bump' can cause thin, weak convection zone
- Evolutionary differences
 - Massive-star lifetimes (ZAMS to TAMS) are much shorter due to much-higher luminosity

- Tracks in HR diagram are different low-mass tracks are vertical, high-mass are diagonal
- In both cases, luminosity increases due to increase in molecular weight in core
 - * Higher μ requires higher T or ρ to support overlying layers
 - * Core contracts somewhat to make these changes
 - * Faster nuclear burning occurs
 - * Luminosity increases
- Difference due to differing abundance/molecular weight distribution in cores
 - * Low-mass stars have smoothly varying abundance change
 - * High-mass stars have discontinuous abundance chage (although discontinuity smeared out by core shrinkage), due to convective mixing
 - * Very-low-mass stars ($\lesssim 0.3\,M_{\odot})$ are completely mixed by convection; this gives very long ages
- End of main sequence evolution
 - At end of main sequence, general configuration is same:
 - * Nearly-isothermal core with zero luminosity
 - * Core is hot due to high μ
 - $\ast\,$ At core boundary, temperature high enough for nuclear burning
 - $\ast\,$ This burning in shell around core
 - High temperatures, large burning volume leads to high shell luminosity
 - However, star is no longer in thermal equilibrium; envelope expands