30 — The Sun [Revision : 1.1]

- The Sun as a Low-Mass Star
 - Sun exemplifies principal characteristics of low-mass stars
 - * Hydrogen burning by PP chain
 - * Radiative core
 - * Convective envelope
 - About 4.5 billion years old (age from radioactive dating of moon rocks)
 - Surface composition X = 0.94, Y = 0.24, Z = 0.02
 - Initial composition X = 0.71, Y = 0.27, Z = 0.02; surface values changed by diffusive settling
 - Core composition X = 0.34, Y = 0.64; so, about half way through hydrogen burning
- The Solar Neutrino Problem
- Solar atmosphere
 - Photosphere
 - * Where optical light comes from
 - * Bottom level arbitrary; 100 km below $\tau = 1$ at 5000 Å
 - * Top level defined where T = 4400 K; this is a local **temperature minimum**
 - * Absorption lines
 - Chromosphere
 - * Gradually increasing temperature (up to $\sim 10,000 \,\mathrm{K}$)
 - * Low densities, high temperatures lead to ionization
 - * Emission lines due to recombination
 - Transition Region
 - * Sharply increasing temperature
 - * Narrow (~ $100\,{\rm km})$
 - * Emission lines
 - Corona
 - * High temperature (up to million-K)
 - * Components
 - \cdot K corona white-light emission from scattering of photospheric radiation by electrons
 - $\cdot\,$ F corona scattering of photospheric radiation by dust grains
 - \cdot E corona emission lines from highly ionized elements
 - $\ast\,$ Corona is heated by input of mechanical energy from below
- Magnetic field
 - 11-year Solar cycles
 - Sunspot polarity
 - Butterfly diagram
 - Prominences
 - CMEs

- The Solar Wind
 - Hydrostatic equilibrium in corona:

$$\frac{\mathrm{d}P}{\mathrm{d}r}=-\rho\frac{GM_{\odot}}{r^2}$$

(assume mass in corona is negligible)

- Assume isothermal ideal gas:

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{P\mu m_H}{kT}\frac{GM_\odot}{r^2}$$

- Solve:

$$P(r) = P_{\odot} \exp\left[\frac{GM_{\odot}\mu m_H}{kT} \left(\frac{1}{r} - \frac{1}{R_{\odot}}\right)\right]$$

where P_{\odot} is surface pressure

- Asymptotic value as $r \longrightarrow \infty$:

$$P \longrightarrow = P_{\odot} \exp\left[-\frac{GM_{\odot}\mu m_H}{kTR_{\odot}}\right]$$

- Typically much larger than pressure of interstellar medium; so, hydrostatic equilibrium cannot occur
- Instead, the Sun has a steady $\mathbf{pressure-driven}$ wind
 - * Terminal velocity $\sim 700\,{\rm km\,s^{-1}}$
 - * Mass-loss rate $\dot{M} \sim 10^{-14}\,\mathrm{M}_{\odot}\,\mathrm{yr}^{-1}$
- Reason for the solar wind is heating which keeps corona hot