27 — Nuclear Energy Generation [Revision : 1.2]

e Energy Sources
— Age of Moon from rocks: 4.5 billion years
— Recall from Notes 19: Kelvin-Helmholtz timescale
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For Sun, txyg ~ 30 Myr, much shorter than age of Earth or solar system. So, the Sun
cannot be powered by KH contraction

Likewise, Sun cannot be powered by chemical energy, because energy release per atom is
on order of ~ 1eV

— Only possible energy source is nuclear; recognized in early 20" Century, before details
worked out
e Binding Energy
— Energy is released when nucleus is assembled from constituent nucleons; this is binding
energy of nucleus
— Release comes from work done by strong nuclear force
— Express binding energy as

By, = Amc?

— Am is mass defect — difference in combined masses of constituent nucleons, m;, and
mass of nucleus myye:

Am = g mMj — Myyc
J

— Classifying nuclei:

*

Z is number of protons (atomic number)

* N is number of neutrons

* A is number of nucleons (protons + neutrons; mass number)
x A=Z+N

— Write mass of constituents as
ij =Zmp+ Nmy =Zmp + (A — Z)my,
J
where my, is proton mass, m, is neutron mass
— So, binding energy is
Ey = [Zmp + (A — Z)my — Manuc) ?

— Binding energy per nucleon is

By, [Zmp + (A — Z)my — Minuc] 02.
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indication of how tightly bound each nucleon is, and so how much energy can be extracted
through nuclear reactions

— If a reaction leads to net increase in E}, /A, then it is exothermic
— Graph of F}, /A against A is peaked at Fe (~ 8.5 MeV



— For A smaller than 56, use fusion to release energy
— For A greater than 56, use fission to release energy
e Thermonuclear Reactions
— Nuclear reactions occur by collisions between nuclei and/or protons (‘free’ neutrons decay
into protons in ~ 15 mins)

— To get particles close enough to react via short-range strong force, must overcome repul-
sion between positive charges

— Define close enough as radius of nucleus 7y,

— At this distance, Coulomb (electrostatic) potential energy of two particles is
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— This energy must come from kinetic energy of particles, and in turn from thermal energy.
So, for thermonuclear reactions
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— To find 7,yc, use de Broglie wavelength

h
Tnuc ™~ A~ —
p
But
p? _3kT
2m 2
and so
h
Tnuc -
3mkT
— Solving for T',
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For proton-proton reaction, Z; = Zs = 1; but resulting T' much higher than found e.g.
in Sun

— Solution to paradox: quantum-mechanical tunneling!
e Reaction rates

— Consider reaction where target particle x interacts with incoming particles ¢

— Number of reactions per target in time dt:
N = ovn;dt

where ¢ is reaction cross section, v is velocity of incoming particles, and n; is their number
density

— HOWEVER, not all incoming particles have same energy; and o strongly dependent on
energy



— So, consider number of reactions per second per target with incoming particle in energy
interval (E, FE + dE):
dNg = o(E)v(E)n; g dE dt
where n; g is number of incoming particles with energy in same interval,
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where m; is incoming particle mass

— Assume incoming particles are in thermal equilibrium; number distribution given by
Maxwell-Boltzmann distribution:

ni,pdE = %nEdE

where
2n 1

npdE = 7172 (KT)3/2
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— Now must find energy-dependent cross-section o(E). Generally, complicated, but can at
least get scalings

— For an actual interaction to take place, incoming particle must (a) ‘hit’ target particle,
and (b) interact with it

— For (a), cross section of target varies with geometrical cross section:
o(B) x A% x E~!

where A is de Broglie wavelength

— For (b), cross section of target varies with tunneling probability. This probability is
exponential with height of Coulomb barrier:

o(E) x e~2mUc/E
(factor of 272 is from QM). Evaluate barrier height Ug from Coulomb potential at r = \:
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Final result: “1/2
o(E) x e

where
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— Putting (a) and (b) together:
(E) _ S(E) ebe_l/Q

where function S(F) is now some hopefully slowly-varying function of energy

— Reactions per second thus becomes

S(E) _yg-1/2 (2E V2 on 1 1/2 ,—E/kT




— Integrate over all energies, multiply by n, divide by dt to get overall reaction rate per
unit volume
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— Integrand is product of rapidly dropping factor e~ F/kT (

ticles with high thermal energies), and rapidly growing factor e due to increased
probability of barrier penetration at high energies). Two factors combine to form strongly
peaked curve — the Gamow peak

2/3
(4
2

Major contribution to rate integral over narrow energy interval centered on Ey; allows us
to replace S(F) with value at peak:
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— Top of Gamow peak has energy

However, this assumes S(F) is slowly-varying function of energy; in fact, sometimes sharp
variations occur due to resonances

— One missing ingredient in above analysis: electron screening makes nuclei appear ‘less
positive’, and makes reactions easier to occur

— Above expressions for reaction rate are complicated; often fit using simple power law
Tig = ToXiXIpa/Tﬁ

If each reaction creates energy &y, energy generation rate per unit mass given by
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