
27 — Nuclear Energy Generation [Revision : 1.2]

• Energy Sources

– Age of Moon from rocks: 4.5 billion years

– Recall from Notes 19: Kelvin-Helmholtz timescale

tKH =
GM2

LR

– For Sun, tKH ∼ 30 Myr, much shorter than age of Earth or solar system. So, the Sun
cannot be powered by KH contraction

– Likewise, Sun cannot be powered by chemical energy, because energy release per atom is
on order of ∼ 1 eV

– Only possible energy source is nuclear; recognized in early 20th Century, before details
worked out

• Binding Energy

– Energy is released when nucleus is assembled from constituent nucleons; this is binding
energy of nucleus

– Release comes from work done by strong nuclear force

– Express binding energy as
Eb = ∆mc2

– ∆m is mass defect — difference in combined masses of constituent nucleons, mj , and
mass of nucleus mnuc:

∆m =
∑

j

mj −mnuc

– Classifying nuclei:

∗ Z is number of protons (atomic number)
∗ N is number of neutrons
∗ A is number of nucleons (protons + neutrons; mass number)
∗ A = Z + N

– Write mass of constituents as∑
j

mj = Zmp + Nmn = Zmp + (A− Z)mn,

where mp is proton mass, mn is neutron mass

– So, binding energy is
Eb = [Zmp + (A− Z)mn −mnuc] c2

– Binding energy per nucleon is

Eb

A
=

[Zmp + (A− Z)mn −mnuc] c2

A
;

indication of how tightly bound each nucleon is, and so how much energy can be extracted
through nuclear reactions

– If a reaction leads to net increase in Eb/A, then it is exothermic

– Graph of Eb/A against A is peaked at Fe (∼ 8.5 MeV



– For A smaller than 56, use fusion to release energy

– For A greater than 56, use fission to release energy

• Thermonuclear Reactions

– Nuclear reactions occur by collisions between nuclei and/or protons (‘free’ neutrons decay
into protons in ∼ 15 mins)

– To get particles close enough to react via short-range strong force, must overcome repul-
sion between positive charges

– Define close enough as radius of nucleus rnuc

– At this distance, Coulomb (electrostatic) potential energy of two particles is

UC =
Z1Z2e

2

4πε0rnuc

– This energy must come from kinetic energy of particles, and in turn from thermal energy.
So, for thermonuclear reactions

3
2
kT ≈ UC =

Z1Z2e
2

4πε0rnuc

– To find rnuc, use de Broglie wavelength

rnuc ∼ λ ∼ h

p

But
p2

2m
=

3kT

2
and so

rnuc =
h√

3mkT

– Solving for T ,

T =
Z2

1Z2
2e4m

12π2ε20h
2k

For proton-proton reaction, Z1 = Z2 = 1; but resulting T much higher than found e.g.
in Sun

– Solution to paradox: quantum-mechanical tunneling!

• Reaction rates

– Consider reaction where target particle x interacts with incoming particles i

– Number of reactions per target in time dt:

N = σvnidt

where σ is reaction cross section, v is velocity of incoming particles, and ni is their number
density

– HOWEVER, not all incoming particles have same energy; and σ strongly dependent on
energy



– So, consider number of reactions per second per target with incoming particle in energy
interval (E,E + dE):

dNE = σ(E)v(E)ni,E dE dt

where ni,E is number of incoming particles with energy in same interval,

v(E) =
(

2E

mi

)1/2

where mi is incoming particle mass

– Assume incoming particles are in thermal equilibrium; number distribution given by
Maxwell-Boltzmann distribution:

ni,EdE =
ni

n
nEdE

where
nE dE =

2n

π1/2

1
(kT )3/2

E1/2e−E/kT dE

– Now must find energy-dependent cross-section σ(E). Generally, complicated, but can at
least get scalings

– For an actual interaction to take place, incoming particle must (a) ‘hit’ target particle,
and (b) interact with it

– For (a), cross section of target varies with geometrical cross section:

σ(E) ∝ πλ2 ∝ E−1

where λ is de Broglie wavelength

– For (b), cross section of target varies with tunneling probability. This probability is
exponential with height of Coulomb barrier:

σ(E) ∝ e−2π2UC/E

(factor of 2π2 is from QM). Evaluate barrier height UC from Coulomb potential at r = λ:

UC

E
=

Z1Z2e
2

4πε0λE

Final result:
σ(E) ∝ e−bE−1/2

where

b =
πm

1/2
i Z1Z2e

2

21/2ε0h

– Putting (a) and (b) together:

σ(E) =
S(E)

E
e−bE−1/2

where function S(E) is now some hopefully slowly-varying function of energy

– Reactions per second thus becomes

dNE =
S(E)

E
e−bE−1/2

(
2E

mi

)1/2 2n

π1/2

1
(kT )3/2

E1/2e−E/kT dE dt



– Integrate over all energies, multiply by nx divide by dt to get overall reaction rate per
unit volume

rix = nx

∫
dNE

dt
=

(
2

kT

)3/2
ninx

(miπ)1/2

∫ ∞

0

S(E)e−bE−1/2
e−E/kT dE.

– Integrand is product of rapidly dropping factor e−E/kT (due to decline in number of par-
ticles with high thermal energies), and rapidly growing factor e−bE−1/2

(due to increased
probability of barrier penetration at high energies). Two factors combine to form strongly
peaked curve — the Gamow peak

– Top of Gamow peak has energy

E0 =
(

bkT

2

)2/3

Major contribution to rate integral over narrow energy interval centered on E0; allows us
to replace S(E) with value at peak:

rix ≈ nx

∫
dNE

dt
=

(
2

kT

)3/2
ninx

(miπ)1/2
S(E0)

∫ ∞

0

e−bE−1/2
e−E/kT dE.

However, this assumes S(E) is slowly-varying function of energy; in fact, sometimes sharp
variations occur due to resonances

– One missing ingredient in above analysis: electron screening makes nuclei appear ‘less
positive’, and makes reactions easier to occur

– Above expressions for reaction rate are complicated; often fit using simple power law

rix ≈ r0XiXxρα′T β

If each reaction creates energy E0, energy generation rate per unit mass given by

εix =
E′
ρ

rix = ε′0XiXxραT β


