
25 — Convective Stability [Revision : 1.4]

• Bouyancy

– Familiar concept: an object lighter than its surroundings rises (bubbles, hot air balloons)

– Consequence of hydrostatic stratification

– Consider bubble with density ρ(b) and volume dτ (b), immersed in surroundings with
density ρ(s).

– Force on bubble due to surrounding pressure gradients is

Fp = −dP

dr
dτ (b)

Important Note: no b or s on P because pressure inside and outside bubble are same
— pressure equalization is almost instantaneous (timescale is blob size / sound speed)

– Assume surroundings are in hydrostatic equilibrium; pressure gradient is

dP

dr
= −ρ(s)g

and so
Fp = ρ(s)gdτ (b)

– Force on bubble due to gravity is

Fg = −gρ(b)dτ (b)

– Net force
F = Fp + Fg = g(ρ(s) − ρ(b))dτ (b),

or per-unit-volume

f =
F

dτ (b)
= g(ρ(s) − ρ(b))

• Convective Instability

– Consider bubble starting out at same density, temperature as surroundings; f = 0

– Bubble then displaced ∆r in radial direction (by random fluctuation); net force per unit
volume is

f = g(∆ρ(s) −∆ρ(b))

where ∆ρ(s) is change in density of surroundings, and ∆ρ(b) is change in density of blob

– If f has same sign as ∆r, then force will push blob further away from starting position
— instability!

– Result of this instability is convection: rising and falling motions that transport energy

– How do we calculate ∆ρ(s) and ∆ρ(b)?

• Density Changes

– Surrounding density change ∆ρ(s) given by ambient density gradient:

∆ρ(s) =
dρ

dr
∆r.

– Bubble change depends on the thermodynamic processes going on in blob as it moves

– For simplicity, assume no energy exchange with surroundings — adiabatic motion



– For adiabatic changes,
∆P

P
= γ

∆ρ

ρ

where γ is ratio of specific heats of gas (see O&C, eqn. 10.81)

– So,

∆ρ(b) =
1
γ

ρ

P
∆P =

1
γ

ρ

P

dP

dr
∆r

• Bubble Motion

– Putting together, net force per unit volume on bubble:

f = g

(
dρ

dr
− 1

γ

ρ

P

dP

dr

)
∆r

– Apply Newton’s Second Law to bubble:

ρ
d2∆r

dt2
= −ρN2∆r

where

N2 = g

(
1
γ

d lnP

dr
− d ln ρ

dr

)
is the square of the Brunt-Väisälä frequency.

– Solutions with N2 > 0:

∆r ∝

{
sin(Nt)
cos(Nt)

Oscillatory motion; stable, no convection

– Solutions with N2 < 0:
∆r ∝

{
e
√
|N2|te−

√
|N2|t

Run-away motion; unstable, convection

• Stability Criteria

– Criterion for convective stability is N2 > 0; this is the Schwarzschild Criterion:

1
γ

d lnP

dr
>

d ln ρ

dr

– More common form for Schwarzschild Criterion is in terms of temperature gradients.

– For ideal gas, neglecting changes in µ,

d lnP

dr
=

d ln ρ

dr
+

d lnT

dr

So, eliminating density gradient, stability criterion is

1
γ

d lnP

dr
>

d lnP

dr
− d lnT

dr

Simplfying:
d lnT

dr
>

γ − 1
γ

d lnP

dr



– Dividing through by −d lnP/dr,
∇ > ∇ad

where
∇ ≡ d lnT

d ln r

is the physical temperature gradient — quantity that depends on temperature gra-
dients in star; and

∇ad ≡
γ − 1

γ

is adiabatic temperature gradient — quantity that depends on thermodynamic prop-
erties of stellar material

• Convective & Radiative Regions

– In any region, energy transport occurs by radiation alone (if convectively stable), or by
combination of radiation and convection (if convectively unstable)

– To find out what happens in a given region, consider radiative diffusion equation:

Frad = −4acT 3

3κρ

dT

dr

Rewrite as
d lnT

d lnP
= ∇ = −3κρFrad

4acT 4

(
d lnP

dr

)−1

.

– Introduce pressure scale height as

HP = −
(

d lnP

dr

)−1

;

then,

∇ =
3κρFrad

4acT 4
HP .

– Guided by this expression, introduce radiative temperature gradient as

∇rad =
3κρF

4acT 4
HP ,

where F is total flux; this corresponds to value of ∇ that would ensue if all energy
transport is via radiation (i.e., if F = Frad)

– Use radiative gradient to test for convection: if ∇rad > ∇ad, then region is superadia-
batic, and will be convectively unstable

– Once convective motions are established, the following inequalities hold:

∗ ∇ ≥ ∇ad

∗ ∇ ≤ ∇rad

– Actual value of ∇ that ensues depends on details of convective energy transport


