24 — Simple Radiative Models [Revision : 1.1]

- Recapitulation of stellar structure equations
 - Hydrostatic equilibrium

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\rho g = -\rho \frac{GM_{\mathrm{r}}}{r^2}$$

- Mass-radius

$$\frac{\mathrm{d}M_{\mathrm{r}}}{\mathrm{d}r} = 4\pi r^2 \rho$$

- Energy conservation

$$\frac{\mathrm{d}L_{\mathrm{r}}}{\mathrm{d}r} = 4\pi r^2 \rho \epsilon$$

- Radiative diffusion

$$F_{\rm rad} = -\frac{1}{\bar{\kappa}\rho} \frac{\mathrm{d}P_{\rm rad}}{\mathrm{d}r} = -\frac{4acT^3}{3\bar{\kappa}\rho} \frac{\mathrm{d}T}{\mathrm{d}r}$$

where $P_{\rm rad} = aT^4/3$ is radiation pressure

- Scaling relations for radiative models
 - Assume all energy is transported by radiation
 - Look for simple scaling relations between mass, radius and luminosity
 - Drop all numerical constants, assume $\bar{\kappa},\,\epsilon$ are uniform in star
 - Mass-radius

$$\frac{M}{R} \sim R^2 \rho$$

 \mathbf{SO}

$$\rho \sim \frac{M}{R^3}$$

density is mass divided by characteristic volume

- Hydrostatic equilibrium & mass-radius

$$\frac{P}{R} \sim \frac{M}{R^3} \frac{GM}{R^2}$$

 \mathbf{SO}

$$P \sim \frac{GM^2}{R^2} \frac{1}{R^2}$$

pressure is characteristic gravitational force divided by characteristic area

- Energy conservation & mass-radius

$$\frac{L}{R} \sim R^2 \rho \epsilon$$

 $L \sim R^3 \rho \epsilon \sim M \epsilon$

 \mathbf{so}

- Radiative diffusion & mass-radius

$$F_{\rm rad} \sim \frac{L}{R^2} \sim \frac{acT^3}{\bar{\kappa}\rho} \frac{T}{R}$$

 \mathbf{SO}

$$L \sim (aT^4) R^3 \left(\frac{Rc}{\bar{\kappa}M}\right)$$

luminosity is radiant energy per unit volume times characteristic volume divided by diffusion timescale $t_{\rm diff}$

- * Diffusion timescale for any process is $t_{\text{diff}} \sim R^2/D$, where R is characteristic length, and D is diffusion coefficient
- * $D \sim v \langle s \rangle$, where v is velocity and $\langle s \rangle$ is mean free path
- * For photons diffusing in star $v \sim c$ and $\langle s \rangle \sim 1/\bar{\kappa}\rho \sim R^3/\bar{\kappa}M$ so $D \sim cR^3/\bar{\kappa}M$
- * Hence, $t_{\text{diff}} \sim \bar{\kappa} M/Rc$
- Final relation required to close above equations is equation-of-state
 - * Ideal gas

$$P \sim \frac{\rho kT}{\mu m_{\rm H}} \sim \frac{kMT}{\mu m_{\rm H}R^3}$$

* Radiation

$$P \sim aT^4$$

- Focus on ideal gas case
 - * Eliminate pressure using hydrostatic and EOS

$$\frac{kMT}{\mu m_{\rm H}R^3}\sim \frac{GM^2}{R^4}$$

 \mathbf{SO}

 \mathbf{so}

$$TR \sim \frac{GM\mu m_{\rm H}}{k}$$

* Eliminate $(TR)^4$ from radiative diffusion

$$\begin{split} L &\sim a \left(\frac{GM\mu m_{\rm H}}{k}\right)^4 \frac{c}{\bar{\kappa}M} \\ L &\sim \frac{ac}{\bar{\kappa}} \left(\frac{G\mu m_{\rm H}}{k}\right)^4 M^3 \end{split}$$

- * Big result: standard mass-luminosity relation $L \sim M^3$
- * Radius does not enter into this relation
- * Note dependence on μ^4 stars with higher molecular weight are more luminous for the same mass
- Eddington standard model
 - Slightly more accurate model for a radiative star
 - Assume that all mass, energy generation concentrated right at center of star; so, away from center

$$M_{\rm r} = M$$

and

$$L_{\rm r} = L$$

- Also assume that opacity is constant
- Radiative diffusion equation can now be written as

$$\frac{\mathrm{d}P_{\mathrm{rad}}}{\mathrm{d}r} = -\rho \frac{\bar{\kappa}L}{4\pi cr^2}$$

- Compare against hydrostatic equilibrium

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\rho \frac{GM}{r^2}$$

Take ratio

$$\frac{\mathrm{d}P}{\mathrm{d}P_{\mathrm{rad}}} = \frac{4\pi GMc}{\bar{\kappa}L}$$

where right-hand side is *constant*

– In fact, this constant is related to Eddington parameter:

$$\Gamma = \frac{\bar{\kappa}L}{4\pi GMc}$$

- So,

$$\frac{\mathrm{d}P}{\mathrm{d}P_{\mathrm{rad}}} = \frac{1}{\Gamma},$$

and so

$$P = \frac{P_{\rm rad}}{\Gamma}$$

(set constant of integration to zero).

- Define ratio of gas pressure to total pressure:

$$P_{\rm g} = \beta P$$

 \mathbf{SO}

$$P_{\rm rad} = (1 - \beta)P$$

- Because $P\propto P_{\rm rad}$ in Eddington standard model, see that β is constant throughout, and equal to $1-\Gamma$
- Use EOS to find pressure-density relation:

$$P=\frac{1}{1-\beta}\frac{aT^4}{3}$$

but

 \mathbf{SO}

$$T = \frac{P_{\rm g}\mu m_{\rm H}}{\rho k}$$

$$P = \frac{1}{1-\beta} \frac{a}{3} \left(\frac{P_{\rm g}\mu m_{\rm H}}{\rho k}\right)^4$$

Resulting scaling:

$$P \sim \rho^{4/3}$$

– One-to-one relationship between total pressure means Eddington standard model is a $\gamma=4/3~(n=3)$ polytrope