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• Mechanical Equations

– So far, two differential equations for stellar structure:

∗ hydrostatic equilibrium:
dP

dr
= −ρ

GMr

r2

∗ mass-radius relation:
dMr

dr
= 4πr2ρ

– Two equations involve three unknowns: pressure P , density ρ, mass variable Mr — cannot
solve

– Try to relate P and ρ using a gas equation of state — e.g., ideal gas:

P =
ρkT

µ

...but this introduces extra unknown: temperature T

– To eliminate T , must consider energy transport

• Polytropic Equation-of-State

– Alternative to having to do full energy transport

– Used historically to create simple stellar models

– Assume some process means that pressure and density always related by polytropic
equation of state

P = Kργ

for constant K, γ

– Polytropic EOS resembles pressure-density relation for adibatic change; but γ is not
necessarily equal to usual ratio of specific heats

– Physically, gases that follow polytropic EOS are either

∗ Degenerate — Fermi-Dirac statistics apply (e.g., non-relativistic degenerate gas has
P ∝ ρ5/3)

∗ Have some ‘hand-wavy’ energy transport process that somehow maintains a one-to-
one pressure-density relation

• Polytropes

– A polytrope is simplified stellar model constructed using polytropic EOS

– To build such a model, first write down hydrostatic equilibrium equation in terms of
gradient of graqvitational potential:

dP

dr
= −ρ

dΦ
dr

– Eliminate pressure using polytropic EOS:

K

ρ

dργ

dr
= −dΦ

dr



– Rearrange:
Kγ

γ − 1
dργ−1

dr
= −dΦ

dr

– Solving:
K(n + 1)ρ1/n = −Φ

where n ≡ 1/(γ − 1) is the polytropic index (do not confuse with number of degrees of
freedom — different!). Note that constant of integration chosen so that surface ρ → 0
corresponds to Φ → 0)

– Significance of result: density and gravitational potential are directly related to one an-
other

– To progress further, use other relation between density and potential — Poisson’s equa-
tion:

∇2Φ = 4πGρ;

in spherical symmetry,
1
r2

d
dr

(
r2 dΦ

dr

)
= 4πGρ

– Combining: (
n + 1

n

)
K

r2

d
dr

(
r2ρ1/n−1 dρ

dr

)
= −4πGρ

– Messy equation; but can reduce to a dimensionless form by writing density as

ρ(r) = ρc [Dn(r)]n

where ρc is central density. Also, write radius as

r = λnξ

where

λn =

[
(n + 1)

(
Kρ

1/n−1
c

4πG

)]1/2

– Then, equation becomes
1
ξ2

d
dξ

[
ξ2 dDn

dξ

]
= −Dn

n

which is Lane-Emden equation

• Solving the LE equation

– To solve equation, need boundary conditions
– Because ρ → ρc at center,

Dn|ξ=0 = 1

– Also, mass continuity requires that

dDn

dξ

∣∣∣∣
ξ=0

= 0

– At surface ξ = ξ1, density goes to zero

Dn|ξ=ξ1
= 0

(in fact, this equation serves to define ξ1). Radius of star follows as

R = λnξ1



– Integrate over density to find mass of star:

M =
∫ R

0

4πr2ρ dr = −4πλ3
nρcξ

2
1

dDn

dξ

∣∣∣∣
ξ=ξ1

.

– In practice, to construct a polytropic stellar model, first choose M , R and n. After solving
LE equation, find λn from radius relation above; find ρc from mass relation; and find K
from definition of λn.

• Properties of LE solutions

– Analytic only for n = 0, n = 1 and n = 5

– For n ≥ 5, ξ1 is infinite (and so radius is infinite)

– Special cases:

∗ Homogeneous (constant density) : n = 0
∗ Isothermal (constant temperature) : n →∞


