14 — Model Atmospheres [Revision : 1.2]

- 'Real' model atmospheres
 - Attempt to include all relevant physics, obtain **emergent spectrum** that can be compared with observations
 - Key assumptions:
 - * Hydrostatic equilbrium
 - * Plane parallel
 - * Radiative equilibrium
 - * Local thermodynamic equilibrium (LTE)
- Hydrostatic equilibrium
 - Atmosphere supports itself against downward pull of gravity by pressure gradients
 - Consider slab of atmosphere with vertical extent dz and horizontal area dA.
 - * Upward pressure force on lower side is P(z)dA
 - * Downward pressure force on upper side is P(z + dz)dA
 - * Net pressure force is [P(z) P(z + dz)]dA
 - * For hydrostatic equilibrium, pressure force must balance gravitational force

$$[P(z) - P(z + dz)]dA = g(\rho dAdz)$$

where $g = GM/R^2$ is surface gravitational acceleration, and $\rho dAdz$ is mass of slab * In limit $dz \rightarrow 0$,

$$\frac{\mathrm{d}P}{\mathrm{d}z} = -g\rho$$

- For ideal gas:

$$\rho = \frac{P\mu}{kT}$$

and so:

$$\frac{\mathrm{d}P}{\mathrm{d}z} = -g\frac{P\mu}{kT}$$

(i.e., get pressure structure from temperature structure)

- Approximation: assume isothermal (constant T), solve for P:

$$P = P_0 \mathrm{e}^{-g\mu z/kT} = P_0 \mathrm{e}^{-z/H_P}$$

 H_P is pressure scale height:

$$H_P = \frac{kT}{g\mu}$$

(typically scale of variation of pressure)

• Plane parallel

- Already assumed in preceding notes
- But check: for Sun, $H_P \approx 300 \,\mathrm{km} \approx 0.0004 \,R_{\odot}$
- So, thickness of atmosphere is much smaller than solar radius plane parallel assumption is good
- Same applies to other main sequence stars but perhaps not for supergiants (low $g \rightarrow$ large H_P)

- Radiative equilibrium
 - For gray atmosphere, radiative equilibrium (RE) was condition that

$$\kappa \langle I \rangle = \kappa S$$

(amount absorbed per unit length = amount emitted)

- For non-gray atmosphere, condition of RE must be written as

$$\int_0^\infty \kappa_\lambda \langle I_\lambda \rangle \mathrm{d}\lambda = \int_0^\infty \kappa_\lambda S_\lambda \mathrm{d}\lambda$$

(reduces to gray-atmosphere case when all quantities independent of wavelength)

– This implies that

$$\int_0^\infty \kappa_\lambda \frac{\mathrm{d}F_\lambda}{\mathrm{d}\tau_{\lambda,\mathrm{v}}} \mathrm{d}\lambda = \kappa_\lambda \frac{\mathrm{d}F}{\mathrm{d}\tau_{\lambda,\mathrm{v}}} = 0$$

where

$$F = \int_0^\infty F_\lambda \mathrm{d}\lambda$$

is bolometric flux. So, bolometric flux is depth-independent even in non-gray atmosphere (although F_{λ} itself is not)

- Local thermodynamic equilibrium
 - In isolated enclosure, complete **thermal equilibrium** means that a single temperature T can be assigned to matter and radiation
 - This in turn means that
 - * Distribution of particle velocities follows Maxwell-Boltzmann distribution
 - * Excitation state of matter described by Boltzmann statistics
 - * Ionization state of matter described by Saha equation
 - * Radiation field described by Planck function
 - Stellar atmosphere is not an isolated enclosure; there is net upward flow of radiation
 - However, in most cases mean free path $\langle s \rangle \ll H_P$
 - Then, very good approximation to assume local thermodynamic equilibrium single temperature T describing all matter properties
 - Differs from complete thermal equilibrium in that $I_{\lambda} \neq B_{\lambda}$ (however, still true that $S_{\lambda} = B_{\lambda}$, because source function/emissivity depends on matter properties)
- Constructing a model atmosphere
 - Assume an effective temperature $T_{\rm eff}$ and gravity g
 - Introduce column mass m (in g cm⁻²) as independent variable:

$$\mathrm{d}m = -\rho \mathrm{d}z$$

- Assume/guess a temperature structure T(m) (e.g., from equivalent gray/Eddington model)
- Integrate equation of hydrostatic equilibrium

$$\frac{\mathrm{d}P}{\mathrm{d}m}=-g$$

to find

$$P(m) = gm + C$$

and also $\rho(m)$ (from P(m) and T(m)). (Note: we've ignored radiation pressure, which adds an extra term to equation of HE)

- Given T, P and ρ at each m, calculate opacity κ_{λ} at each m (we'll see how later)
- Solve RTE:

$$\mu \frac{\mathrm{d}I_{\lambda}}{\mathrm{d}\tau_{\lambda,\mathrm{v}}} = I_{\lambda} - S_{\lambda}$$

or

$$\mu \frac{\mathrm{d}I_{\lambda}}{\mathrm{d}m} = \kappa_{\lambda}I_{\lambda} - \kappa_{\lambda}S_{\lambda}$$

to find $I_{\lambda}(m,\mu)$ (use formal solution)

- Generally, source function S_{λ} depends on local temperature (thermal emission) and local radiation field (scattering)
- However, for simplicity we neglect scattering, and assume

$$S_{\lambda} = B_{\lambda}$$

(i.e., LTE thermal emission)

- Calculate depth-dependent bolometric flux

$$F(m) = \int_0^\infty 2\pi \int_{-1}^1 I_\lambda(m,\mu)\mu \mathrm{d}\mu \mathrm{d}\lambda$$

- Compare F(m) against 'expected' flux defined $F=\sigma T_{\rm eff}^4$
 - * In radiative equilibrium, they should be equal
 - * Generally, they are not same because we assumed T(m)
 - * Apply temperature correction procedure, to adjust T(m) at each depth so that we are closer to radiative equilibrium
 - * Solve RTE again for corrected T(m), repeat as necessary