
9 — Describing a Radiation Field [Revision : 1.3]

• Specific Intensity

– To fully describe a radiation field, we need to specify how much energy

∗ At each point in space
∗ At each point in time
∗ In each direction
∗ At each wavelength

– All this information encapsulated in specific intensity Iλ

– For an infinitessimal area element dA, the amount of energy passing through dA at an
angle θ to the normal, within the wavelength interval (λ, λ + dλ), within the truncated
cone with solid angle dΩ, and within the time interval dt is:

Eλ dλ = Iλ dA cos θ dλ dΩdt

– Aside: solid angle is 3-dimensional analog to planar angle.

∗ For circle of radius r, segment with angle φ (in radians) has arc length

ds = r φ

∗ For sphere of radius r, cone with solid angle dΩ (in steradians) has base area

dA = r2dΩ

∗ Full circle has total angle 2π rad; full sphere has 4π sterad
∗ In spherical-polar coordinates, solid angle differential dΩ can be written in terms of

θ, φ differentials
dΩ = sin θ dθ dφ

• Mean intensity & energy density

– At each point in space, define mean intensity by averaging over all solid angles

〈Iλ〉 =
1
4π

∫
IλdΩ =

1
4π

∫ 2π

0

∫ π

0

Iλ sin θ dθ dφ

– For axisymmetric radiation field (Iλ not depending on φ),

〈Iλ〉 =
1
2

∫ π

0

Iλ sin θdθ.

This often written

〈Iλ〉 =
1
2

∫ 1

−1

Iλdµ

where µ ≡ cos θ (and dµ = sin θdθ)

– For isotropic radiation field, 〈Iλ〉 = Iλ

– Mean intensity is related to the specific energy density uλ via

uλdλ =
4π

c
〈Iλ〉dλ



– For blackbody (recall from notes 3):

uλdλ =
8πhc

λ5

1
ehc/λkT − 1

dλ

Since BB radiation field is isotropic,

Iλdλ = 〈Iλ〉dλ =
c

4π
uλdλ =

2hc2

λ5

1
ehc/λkT − 1

dλ

This last equation defines Planck function — special name for specific intensity of BB
radiation field:

Bλ(T ) ≡ 2hc2

λ5

1
ehc/λkT − 1

(B for blackbody!)

– Total (bolometric) energy density for BB found by integrating over all wavelengths:

u =
∫ ∞

0

uλdλ =
∫ ∞

0

Bλdλ = aT 4

where a = 4σ/c is radiation constant

• Flux

– Total energy passing through surface, per second, per unit area, per unit wavelength, in
all directions, defines specific flux Fλ (aka the monochromatic flux)

– To find Fλ, integrate equation for energy passing through dA over all solid angles:

Fλ =
∫

Eλ

dAdtdλ
=

∫
Iλ cos θdΩ

Using definition of differential solid angle:

Fλ =
∫ 2π

0

∫
0

Iλ cos θ sin θdθdφ

– For axisymmetric radiation field,

Fλ = 2π

∫ π

0

Iλ cos θ sin θdθ = 2π

∫ 1

−1

Iλµdµ

– Often, split flux for axisymmetric field into up (µ > 0) and down (µ < 0) components:

Fλ = Fλ,+ − Fλ,−

where

Fλ,+ = 2π

∫ 1

0

Iλµdµ,

Fλ,− = −2π

∫ 0

−1

Iλµdµ

– For isotropic radiation field,

Fλ = 2πIλ

∫ 1

−1

µdµ = 0

(and Fλ,+ = −Fλ,−)



• Radiation pressure

– Pressure can be thought of as amount of momentum in direction normal to surface,
passing through unit area of surface each second

– Photons carry momentum: p = E/c

– Apply to radiation field: for energy Eλ passing through surface per second per unit area,
momentum in normal direction is

pλ,⊥ =
Eλ

c
cos θ

– Integrate over all solid angles to get radiation pressure

Prad,λ =
∫

Eλ cos θ

cdAdtdλ
=

1
c

∫
Iλ cos2 θdΩ

– Note: the radiation pressure exists irrespective of whether the photons interact with
matter. There is net force due to radiation when there is a gradient of radiation pressure
(i.e., imbalance in radiation pressure on opposite sides of region).

– For axisymmetric radiation field,

Prad,λ =
2π

c

∫ π

0

Iλ cos2 θ sin θdθ =
2π

c

∫ 1

−1

Iλµ2dµ

– For isotropic radiation field,

Prad,λ =
2π

c
Iλ

∫ 1

−1

µ2dµ =
4π

3c
Iλ

– Total radiation pressure (integrated over all wavelengths):

Prad =
∫ ∞

0

Prad,λdλ

For isotropic,

Prad =
1
3
u

(compare with monatomic gas: P = 2/3u)

‘


