7 — Spectral Classification & the HRD [Revision : 1.2]

- Harvard System
 - Divide stars up into differing spectral types, according to strengths of different absorption lines
 - Originally alphabetical sequence
 - * Devised by Pickering & Fleming
 - * Based on strength of Balmer hydrogen lines
 - · Balmer series formed by transition from n = 2 to n = 3, 4, 5, ...
 - · Greek letters $n = 2 \rightarrow 3$ is H α (or Balmer α), $n = 2 \rightarrow 4$ is H β , etc.
 - $\cdot\,$ Useful because all located in visible part of spectrum
 - * Strongest Balmer lines \longrightarrow A-type, weakest \longrightarrow Q-type
 - * Completely empirical
 - Antonia Maury & then Annie Jump Cannon (also 'Harvard Computers') updated sequence
 - * Eliminated some types
 - * Reordered sequence (OBAFGKM 'oh be a fine girl/guy, kiss me')
 - * Introduced decimal subtypes (e.g., A0-A9)
 - $\ast\,$ Basis of the Harvard System
 - * Led to Henry Draper catalog ('HD' numbers)
 - Cecilia Payne-Gaposchkin (another Computer) showed different spectra types due to different surface temperatures
 - * Consequence of **ionization** (Saha equation); affects how many atoms are in lower stage of line transition
 - * **Temperature calibration**: type \longrightarrow effective temperature T_{eff}
 - * Abundances of most stars are similar (and mostly hydrogen)
 - 'Roman numeral' notation for ionization stage: I = neutral, II = singly ionized, III = doubly ionized, etc
 - Jargon: all elements apart from H & He known as metals
 - Principal features of spectral types (see also O&C, table 8.1), from hot to cool:
 - * O-type Strongest HeII lines
 - * **B-type** Strongest HeI lines
 - * A-type Strongest Balmer lines
 - * F-type Weakening Balmer lines, strengthening CaII & neutral metal lines
 - * G-type Weak Balmer lines, strengthening CaII & neutral metal lines
 - * K-type Strongest Call & neutral metal lines
 - * M-type Molecular absorption bands, esp. TiO & VO
 - * L-type, T-type more recent, various molecules (CO, CH₄, H₂O)
- Hertzsprung-Russell diagram
 - Observe and classify many stars
 - Plot stars in diagram with Harvard spectral type on x-axis, absolute magnitude (from apparent magnitude & distance) on y-axis — Hertzsprung-Russell diagram (HRD)
 - Most important concept in stellar astrophysics!

- Find that most stars are dwarfs, lying on diagonal strip the main sequence
- Some stars lie above main sequence giants and supergiants
- Some stars lie below main sequence subdwarfs and white dwarfs
- Use models to create theoretician's HRD
 - * spectral type $\longrightarrow T_{\text{eff}}$ (note: highest T_{eff} on left, lowest T_{eff} on right!)
 - * absolute magnitude $\longrightarrow L$
 - * plot $\log_{10} T_{\text{eff}}$ against $\log_{10} L$
- Since

$$L = 4\pi R^2 \sigma T_{\rm eff}^4,$$

each point in HRD has unique radius

$$R = \sqrt{\frac{L}{4\pi\sigma T_{\rm eff}^4}}$$

- Lines of constant R are diagonals intersecting main sequence (higher T_{eff} on main sequence \leftrightarrow larger R)
- Supergiants and giants bigger/more luminous than dwarfs of same T_{eff} hence the name
- Morgan-Keenan System
 - Problem: to construct HRD, need to know distance to find absolute magnitude and/or lumunosity
 - Morgan & Keenan found luminosity can be judged instead from line widths
 - Full MK spectral type is Harvard type with luminosity class appended
 - In order of decreasing luminosity: Ia luminous supergiants; Ib less-luminous supergiants; II — bright giants; III — giants; IV — subgiants; V — dwarfs; VI — subdwarfs
 - Line widths depend on surface gravity

$$g = \frac{GM}{R^2}$$

because gravity affects how dense photosphere is, and thus how much **line broadening** occurs

- With MK classification, we know T_{eff} and L, and can determine distance **spectroscopic parallax**
- Color-magnitude diagrams
 - For cluster of many stars (1,000's more more), very laborious to find MK type of each one
 - Use alternative form of HRD based on Johnson system photometry:
 - * Measure B and V magnitudes (correct for reddening)
 - $\ast\,$ plot B-V color on x-axis, V magnitude on y-axis
 - All stars at same distance, so V differs from absolute magnitude M_V by fixed amount:

$$V - M_v = 5 \log_{10} \frac{d}{10 \,\mathrm{pc}}$$

where d the same for all stars

- Calibrate main sequence from nearby stars: M_V as a function of B V
- Use M_V calibration and V observations to find cluster distance
- Complication: part of main sequence missing for some clusters!
 - * Consequence of hotter stars evolving faster
 - * Turn-off is measure of cluster age