Assignment 6 — due December 12^{th} [*Revision* : 1.2]

1. Use EZ Web to calculate solar-metalicity models with $\log M/M_{\odot} = -0.4, -0.2, 0.0, \ldots, 1.2,$ 1.4. Set the maximum model number to 100,000, and the maximum model age to 10^{20} ; this will ensure that EZ Web follows as much of the evolution as possible. You only need to generate summary files; model files are not required. With the data from these calculations, plot the evolutionary tracks of the models in a Hertzsprung-Russell diagram. Your diagram should cover the ranges $\log T_{\rm eff} = [4.6, 3.4]$ and $\log L/L_{\odot} = [-2, 6]$.

On your HRD, mark (by hand or using the computer) the following features:

- The zero-age main sequence (for all tracks)
- The episode of overall Kelvin-Helmholtz contraction during hydrogen burning (for $\log M/M_{\odot} \ge 0.2$)
- The point where hydrogen shell burning begins (for all tracks)
- The point of helium core ignition (for $\log M/M_{\odot} \ge 1.4$)
- The general location of the Hayashi line
- The red-giant branch (for $-0.2 \leq \log M/M_{\odot} \leq 1.2$)
- The asymptotic giant branch (for $1.4 \leq \log M/M_{\odot} \leq 1.8$)
- The degenerate cooling curve for $\log M/M_{\odot} = -0.4$
- 2. For the models calculated in the previous question, plot the trajectories followed by each model in the log ρ_c -log T_c plane (where ρ_c is the central density, and T_c is the central temperature). On your plot, also show (as a dashed line) the boundary defined by

$$\frac{T_{\rm c}}{\rho_{\rm c}^{2/3}} = 1261 \, {\rm K} \, {\rm m}^2 \, {\rm kg}^{-2/3},$$

which divides the plane into regions where electron degeneracy is important (low- T_c , high- ρ_c) or unimportant (high- T_c , low- ρ_c). Moreover, show (as a dotted line) the threshold $T_c \approx 10^8 \text{ K}$ for helium ignition.

From your diagram, determine which models will undergo a helium flash, and which will never ignite helium. Justify your answers.

3. Fig. 1 shows spectra for four types of supernova: Ia, Ib, Ic and II. Identify which is which, and justify your answers.

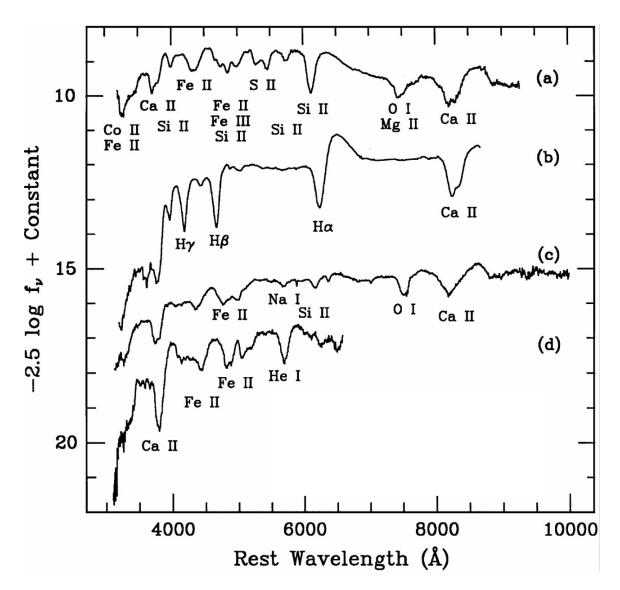


Figure 1: Supernovae spectra for Q3.