4 — Colors & Spectra [Revision : 1.3]

• Colors

- Reminder: bolometric magnitude measures total flux

$$m = -2.5 \log_{10} F + C = -2.5 \log_{10} \int_0^\infty F_\lambda \, \mathrm{d}\lambda + C$$

- Also can use **photometric filter** to measure flux in specific **passband**:

$$m_X = -2.5 \log_{10} F_X + C_X = -2.5 \log_{10} \int_0^\infty \mathcal{S}_X(\lambda) F_\lambda \,\mathrm{d}\lambda + C_X$$

(X represents passband label or name)

- $S_X(\lambda)$ is sensitivity function fraction of light transmitted at wavelength λ . Depends on filter, telescope optical, detector & atmosphere
- Bolometric magnitude corresponds to complete transmission: $S_{bol}(\lambda) = 1$
- Standardized collection of filters makes up photometric system
- Most common system is **Johnson system**:
 - * U-band $(3650 \text{ Å} \pm 340 \text{ Å})$ ultraviolet
 - * *B*-band $(4400 \text{ Å} \pm 490 \text{ Å})$ blue
 - * V-band $(5500 \text{ Å} \pm 445 \text{ Å})$ visual

... defined by 2 aluminum mirrors, 1p21 photomultiplier tube, filters & (for $U\mbox{-band})$ atmospheric transmission (see

- $-m_U, m_B, m_V$ ('color magnitudes' or 'photometric indices') often written as U, B, V (similarly with other systems)
- $-C_U, C_B, C_V$ originally chosen so that Vega & similar stars have (U, B, V) close to zero
- Visual magnitude related to bolometric magnitude by *bolometric correction*:

$$BC = m - V = M - M_V$$

(sometimes m written as m_{bol} , M as M_{bol}).

- -BC depends primarily on effective temperature T_{eff} of star (look it up in table)
- Photometric colors are differences between magnitudes in passbands; e.g.,

$$U - B = -2.5 \log_{10} F_U - C_U + 2.5 \log_{10} F_V + C_V = -2.5 \log_{10} \frac{F_U}{F_B} + C_{UV}$$

- Colors give approximate information about shape of star's spectrum; location on BB curve \longrightarrow temperature
- More negative colors \longrightarrow bluer spectrum
- Important: photometric indices affected by absorption in interstellar medium (extinction)
- Extinction more pronounced in bluer passbands \longrightarrow interstellar reddening
- Spectrum
 - Use a **spectrograph** to measure F_{λ}
 - * Diffraction grating sends light into different directions depending on wavelength λ
 - * Split light is recorded on photographic plate / photomultipliers / CCD

- * Spectrograph characterized by **resolving power** $\lambda/\Delta\lambda$ ($\Delta\lambda$ is smallest difference in wavelength measurable)
- General features of optical stellar spectra (see Fig. 9.5 of O&C):
 - * Smoothly-varying **continuum**
 - * Sharp absorption lines
 - * Abrupt absorption edges (mainly, hot stars)
- Understand features in terms of **Kirchhoff's laws**:
 - * Hot, dense gas produces featureless continuum (similar to BB)
 - * Hot, diffuse gas produces bright emission lines
 - * Cool(er) diffuse gas in front of continuum source produces dark absorption lines
- General picture of stellar surface: atmosphere with hot, dense gas lower down, overlaid by cooler, low-density gas
- Each spectral line formed by specific element in specific state of excitation, ionization (e.g., 'H α ' line at 6563 Å due to absorption by neutral hydrogen in n = 2 excited state)
- Use measurements of line strengths & shapes to determine atmosphere structure
- Also, use measurements of line wavelengths to determine radial velocity of star

$$\frac{\lambda_{\rm obs} - \lambda_{\rm rest}}{\lambda_{\rm rest}} = \frac{\Delta \lambda}{\lambda_{\rm rest}} = \frac{v_r}{c}$$

(Doppler effect, assuming $v_r \ll c$). Especially useful for binary stars (next lecture)