
Assignment 3 — due October 17th [Revision : 1.2]

1. For a gray atmosphere, suppose we approximate the directional (µ) dependence of the specific
intensity using the first-order Taylor expansion,

Ipτv, µq � I0pτvq � I1pτvqµ,

where I0 and I1 depend on the vertical optical depth τv but not on µ.

(a) Derive expressions for the mean intensity xIy, flux F and radiation pressure Prad, in terms
of I0 and I1.

(b) By comparing your expressions, show that the radiation field obeys the Eddington ap-
proximation Prad � p4π{3cqxIy.

(c) Within the Eddington approximation, the solution of the radiative transfer equation is
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(see Notes 13). Use this solution to find an expression for I0 as a function of I1 and τv.

(d) For τv " 1, demonstrate that I0 " I1. (This result justifies the use of the first-order Taylor
expansion at large optical depths, showing that the radiation field becomes isotropic).

2. Consider a model atmosphere within the gray and Eddington approximations.

(a) Assuming radiative equilibrium, write down an expression for the source function S as a
function of vertical optical depth τv and flux F .

(b) Substitute this expression into the formal solution (see Notes 12), to calculate the upward
specific intensity Ipτ, µq as a function of F , τv and direction µ ¡ 0.

(c) Using your expression for the upward specific intensity, evaluate the upward component
of the radiative flux,
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(d) By using the relation
F � F� � F�,

find the corresponding downward component of the flux,
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Iµdµdφ.

What is wrong with your result? What is the cause of this problem?

3. The Sun’s corona is the extended, hot, low-density region above the Sun’s photosphere, that is
heated from below by the input of mechanical energy. The equation of hydrostatic equilibrium
for the corona can be written as
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this is different from the equation of hydrostatic equilibrium for a stellar atmosphere, in that
(i) the vertical coordinate z has been replaced by the radial coordinate r; and (ii) the variation
in the gravity g due to changes in r has been taken into account.

(a) Assuming that the corona is an isothermal ideal gas with temperature T , solve the equa-
tion of hydrostatic equilibrium to find P prq, expressing your result in terms of the surface
pressure P pR@q.



(b) Re-express your result in terms of the usual vertical coordinate z � r �R@.

(c) Show that for |z| ! R@, the expression for P pzq is equivalent to the one derived in class
for an isothermal atmosphere.

(d) Show that for z Ñ8, the pressure asymptotes to a constant value.

(e) Calculate what this asymptotic value is, assuming T � 106 K; P pR@q � 1.4�105 dyne cm�2,
and µ � 10�24 g.

(f) How does this value compare to the pressure P � 10�13 dyne cm�2 in the Interstellar
Medium? Can a hydrostatic corona exist — and if not, what instead happens?


