3 — Blackbody Radiation [Revision : 1.5]

• Stellar spectra

- Bolometric flux F measures total energy at all wavelengths
- Much more information available from considering spectrum:

 $F_{\nu} d\nu \leftrightarrow \text{Energy/unit second/unit area between frequencies } (\nu, \nu + d\nu)$

 $F_{\lambda} d\lambda \leftrightarrow \text{Energy/unit second/unit area between wavelengths} (\lambda, \lambda + d\lambda)$

- Important:

 $F_{\nu} \,\mathrm{d}\nu = F_{\lambda} \,\mathrm{d}\lambda$

But:

$$\nu = \frac{c}{\lambda} \longrightarrow \mathrm{d}\nu = \frac{c}{\lambda^2} \mathrm{d}\lambda$$

Hence:

$$F_{\nu} = \frac{c}{\lambda^2} F_{\lambda}$$

- Integrating over all frequencies/wavelengths:

$$F = \int_0^\infty F_\nu \,\mathrm{d}\nu = \int_0^\infty F_\lambda \,\mathrm{d}\lambda$$

- In the UV, visible and IR parts of spectrum of many stars, F_{λ} is crudely approximated as a blackbody
- Blackbody radiation
 - Blackbody (BB) is an object that absorbs all radiation falling on it
 - In thermal equilibrium at temperature T, radiation re-emitted by BB has a unique F_{λ} that depends only on T
 - Good approximation to BB is opaque container with small hole in it hohlraum
 - General features of BB radiation:
 - * Single peak described by **Wien's law**: $\lambda_{\text{max}}T = 0.290 \,\text{cmK}$
 - * Steep decline blueward of peak ($\lambda < \lambda_{max}$)
 - * Shallow decline redward of peak $(\lambda > \lambda_{max})$ Rayleigh-Jeans tail
- Rayleigh-Jeans formula
 - From classical (pre-quantum) physics
 - BB radiation inside cavity of dimensions $L_x \times L_y \times L_z$ is superposition of standing waves
 - Each wave described by wavevector $\mathbf{k} = (k_x, k_y, k_z); k \equiv |\mathbf{k}| = 2\pi/\lambda$
 - Boundary conditions:

$$k_x = \frac{\pi n_x}{L_x} \qquad k_y = \frac{\pi n_y}{L_y} \qquad k_z = \frac{\pi n_z}{L_z}$$

for integer n_x , n_y , n_z

- Number of permitted waves in interval (k, k + dk):

$$N_k \mathrm{d}k = \frac{4\pi k^2 \mathrm{d}k}{8} \times \frac{2L_x L_y L_z}{\pi^3}$$

First factor is volume of k-space octant between (k, k + dk); second factor is number of standing waves in volume of k space (extra 2 due to two possible polarization directions)

- Number of standing waves in interval $(\lambda, \lambda + d\lambda)$:

$$N_{\lambda} \mathrm{d}\lambda = N_k \mathrm{d}k = \frac{8\pi}{\lambda^4} L_x L_y L_z \mathrm{d}\lambda$$

- Classical physics: in thermal equilibrium, an oscillator (standing wave) gets energy kT (equipartition). IMPORTANT: k is now Boltzmann's constant, not the wavevector!
- Thus, **energy density** (energy per unit volume):

$$u_{\lambda} \mathrm{d}\lambda = \frac{kTN_{\lambda}}{L_{x}L_{y}L_{z}} \mathrm{d}\lambda = \frac{8\pi kT}{\lambda^{4}} \mathrm{d}\lambda$$

- Planck formula
 - At short wavelengths, Rayleigh-Jeans u_{λ} blows up (ultraviolet catastrophe)
 - Fix is energy quantization: energy of standing wave with frequency ν constrained to be an integer multiple of $h\nu = hc/\lambda$
 - At short wavelengths, equipartition energy kT is insufficient to make up a whole quantum
 - Leads to a turnover in the energy density distribution; full derivation gives Planck formula

$$u_{\lambda} \,\mathrm{d}\lambda = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} \,\mathrm{d}\lambda$$

- In limit $\lambda \gg hc/kT$, Planck formula \rightarrow Rayleigh-Jeans formula
- Stefan-Boltzmann formula
 - For an enclosure with energy density u_{λ} , flux through small hole is

$$F_{\lambda} \,\mathrm{d}\lambda = \frac{c}{4} u_{\lambda} \,\mathrm{d}\lambda$$

(will prove when we do radiative transfer).

- For BB:

$$F_{\lambda} = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} \,\mathrm{d}\lambda$$

- Integrate over all wavelengths gives Stefan-Boltzmann formula:

$$F = \int_0^\infty F_\lambda \mathrm{d}\lambda = \sigma T^4$$

where $\sigma = 5.670 \times 10^{-5} \,\mathrm{erg s^{-1} cm^{-2} K^{-4}}.$

- For star of radius R

$$L = 4\pi R^2 F_{\rm surface} = 4\pi d^2 F_{\rm obs}$$

where F_{surf} is bolometric surface flux, and F_{obs} is observed flux at distance d. Assuming star is BB,

$$F_{\rm obs} = \left(\frac{R}{d}\right)^2 F_{\rm surface} = \left(\frac{R}{d}\right)^2 \sigma T^4$$

- In reality, stars are not BBs. However, we define effective temperature T_{eff} of a star as temperature of a BB having same bolometric surface flux:

$$T_{\rm eff} = \left(\frac{L}{4\pi R^2\sigma}\right)^{1/4}$$

Important: T_{eff} is measure of surface flux, it is *not* surface temperature (although indirectly related to surface temperature)