Modeling the Winds and Magnetospheres of Massive Stars

Rich Townsend

University of Wisconsin-Madison

IAU 272 — July 2010

Overview

Winds of Massive Stars

Why do Massive Stars have Winds?

• The Eddington limit:

$$\Gamma_{\rm e} = \frac{g_{\rm e}}{g} = \frac{\kappa_{\rm e} L}{4\pi G M c}$$

• Using line opacity:

$$\Gamma_{\rm thin} = \bar{Q} \Gamma_e$$

• Allowing for optical thickness: $\Gamma_{\text{thick}} = \frac{\Gamma_{\text{thin}}}{\tau} = \frac{\bar{Q}\Gamma_{\text{e}}}{\tau}$

Some Observations of Something

Lucy & Solomon (1970)

CAK Wind Theory

Optical depth in an expanding wind:

 $\tau = \kappa \rho \, \mathrm{d}r = \frac{\kappa \rho v_{\mathrm{th}}}{\mathrm{d}v/\mathrm{d}r}$

• For a power-law line distribution:

 $\Gamma_{\rm thick} = \frac{\bar{Q}\Gamma_{\rm e}}{1-\alpha} \frac{1}{\tau} = \frac{\bar{Q}\Gamma_{\rm e}}{1-\alpha} \left(\frac{{\rm d}v/{\rm d}r}{\rho c\bar{Q}\kappa_{\rm e}}\right)^{\alpha}$

Mass-loss rate and terminal velocity are *eigenvalues*:

$$\dot{M} = \frac{L}{c^2} \frac{\alpha}{\alpha - 1} \left[\frac{\bar{Q} \Gamma_{\rm e}}{1 - \Gamma_{\rm e}} \right]^{(1 - \alpha)/\alpha} \quad v_{\infty} = \sqrt{\frac{\alpha}{1 - \alpha}} v_{\rm esc}$$

Castor, Abbott & Klein (1975) (notation from Gayley 1995)

The Devil is in the Details

Wind Structure

- Line driving is unstable
- Spontaneous structure
- Small scales (clumping)

- Basal perturbations
- Imprinted structure
- Large scales (CIR, DAC, PAM)

Cranmer & Owocki (1996)

What Perturbs the Wind?

Pulsation?

Magnetic Fields?

Magnetic Fields

Evidence for Circumstellar Structure around Magnetic Massive Stars

Walborn (1982)

Empirical Models

"...an oblique rotator model that has hot gas trapped in a magnetosphere above the magnetic equator"

Landstreet & Borra (1978)

Shore & Brown (1990)

Rigid Field Models

- Circumstellar material moves along rigid field lines
- Gravity & centrifugal force represented by effective potential $\Phi_e(s)$
- Hydrostatic eqm. gives relative distribution of material:

$$\rho(s) = \rho_0 \,\mathrm{e}^{-\Phi_{\mathrm{e}}(s)\,\mu m_{\mathrm{H}}/kT}$$

Massive-Star Magnetospheres

The Unusual X-rays of θ^1 Ori C

Emission peak > 1keV

- Δ*v* ~ 200 km/s
- *T* ~ 20-30 MK
- $R_{\rm X} \sim 2 R_{*}$

Magnetically Confined Wind Shocks

- Wind streams from opposing footpoints collide
- Shocks propagate back down field lines
- Equilibrium reached when pre/postshock pressures in balance
- Three regions:
 - wind upflow (cool, fast)
 - postshock (hot, slow)
 - disk (cool, stationary)

Babel & Montmerle (1997) (also Usov & Melrose 1992)

Quantifying the Wind-Field Interaction

Local ratio between magnetic and kinetic energy:

$$\eta = \frac{\mathcal{E}_{\text{mag}}}{\mathcal{E}_{\text{kin}}} = \frac{B^2}{4\pi\rho v^2}$$

• Dipole field & β -law wind:

$$\eta(r) = \frac{B_*^2 R_*^2}{\dot{M} v_\infty} \frac{r^{-4}}{(1 - R_*/r)^\beta}$$
$$\eta_*$$

Star	η_{\star}	R _{Alf}
θ ^ι Ori C	16	2
σ Ori E	10 ⁷	30
ζOri	0.1	

- Wind regimes bounded by $R_{Alf} = \eta_*^{1/4} R_*$
 - Field dominated $-R_* \leq r \leq R_{Alf}$
 - Wind dominated $-r > R_{Alf}$

ud-Doula & Owocki (2002) Owocki & ud-Doula (2004)

Exploring η_* with MHD Simulations*

 $\eta_{*} = 0.1$

*ZEUS-2D; CAK line force; isothermal; no rotation

 $\eta_{*} = 100$

Asif ud-Doula

MHD Simulation* of θ^1 Ori C

*ZEUS-2D; CAK line force; non-isothermal optically thin cooling; no rotation

Asif ud-Doula (see also Gagné et al 2005)

Return to Rigid Field Models

- In the limit $\eta_* \gg 1$, field completely dominates wind
- Field lines behave as rigid pipes guiding the wind flow
- Resurrect rigid field models:

 $\rho(s) = \rho_0 \,\mathrm{e}^{-\Phi_{\mathrm{e}}(s)\,\mu m_{\mathrm{H}}/kT}$

• **BUT:** we can now fix the normalizing density ρ_0 from the surface mass flux scalings found in MHD models

Rigidly Rotating Magnetosphere Models

Townsend & Owocki (2005)

RRM Model of of Ori E

Models vs. Observations

Townsend, Owocki & Groote (2005)

Beyond RRM: Rigid Field Hydrodynamics Simulation* of σ Ori E

*VH-1; rigid field; CAK line force; rotation; optically thin cooling; inverse Compton cooling; thermal conduction; Townsend, Owocki & ud-Doula (2007) Hill et al. (Poster S2-11)

Multi-wavelength Diagnostics from RF-HD

Recent Developments: MHD Simulations* with Rotation

*ZEUS-2D; CAK line force; isothermal; field-aligned rotation

Asif ud-Doula (see also ud-Doula, Owocki & Townsend 2008)

Recent Developments: Angular Momentum Loss

• MHD simulations reproduce Weber & Davies (1967) result:

$$\dot{J} = \frac{2}{3} \dot{M} \,\Omega \,R_{\rm Alf}^2$$

• **However**, we must use *R*_{Alf} appropriate to a *dipole* field:

$$\dot{J} = \frac{2}{3} \dot{M} \,\Omega \,\eta_*^{1/2}$$

• Spin-down time:

$$t_{\rm spin} \approx \frac{3}{2} \, k \, \eta_*^{1/2} t_{\rm mass}$$

Star	η_{\star}	<i>t</i> _{spin} (Myr)
θ ^ι Ori C	16	8
σ Ori E	10 ⁵	I.4
HD 191612	8	0.4

ud-Doula, Owocki & Townsend (2009)

Recent Developments: Direct Measurements of Magnetic Braking

Key Concepts to Take Away...

$$\eta_* = \frac{B_*^2 R_*^2}{\dot{M} v_\infty}$$

- Magnetic confinement parameter

$$t_{
m spin} pprox rac{3}{2} \, k \, \eta_*^{1/2} t_{
m mass} \, - {
m Spindown \, time}$$